期刊文献+

金沙江流域云南段地震灾害人口风险性分布多维度识别办法 被引量:1

Multi-dimensional Identification Method for Population Risk Distribution of Earthquake Disaster in Yunnan Section of Jinsha River Basin
下载PDF
导出
摘要 研究金沙江流域云南段地震灾害人口风险性分布多维度识别办法,提升该地区地震发生时救援能力以及应灾、防灾、救灾能力。通过定量确定人口风险性分布多维度识别的风险性影响因子,其中人口易损系数着重探讨人口分布、人口老幼比例、人口迁移,获得地震灾区人口分布规律,确保该风险因子足够精准。赋权各风险因子构建风险性识别模型,使用空间叠加分析功能,获得地震人口风险分布结果。运用ArcMap软件,计算地震灾害中包含的人口因素,构建研究区域发生地震时的人口风险性分布图,在图中将人口高风险分布区划分出来,以便该地区有关部门使用该办法应对可能发生的地震灾害。 To study the multi-dimensional identification method of the risk distribution of earthquake disaster population in Yunnan section of Jinsha River Basin,so as to improve the rescue capacity,disaster response,disaster prevention and disaster relief capacity in the region when earthquake occurs.This method quantitatively determines the risk influencing factors of multi-dimensional identification of population risk distribution.Among them,the population vulnerability coefficient focuses on the discussion of population distribution,the proportion of old and young population,and population migration,so as to obtain the population distribution rule in earthquake-stricken areas and ensure that the risk factors are accurate enough.The risk identification model is constructed by weighting each risk factor,and the spatial overlay analysis function is used to obtain the risk distribution results of earthquake population.The ArcMap software is used to calculate the population factors included in the earthquake disaster,construct the population risk distribution map of the study area when earthquake occurs,and divide the population risk distribution area in the map,so that the relevant departments in the region can use this method to deal with the possible earthquake disaster.
作者 严佩升 YAN Peisheng(School of Geography and Tourism,Zhaotong University,Zhaotong 657000,China)
出处 《灾害学》 CSCD 北大核心 2021年第4期96-100,共5页 Journal of Catastrophology
基金 云南省教育厅科学研究基金资助性项目(2017zzx077) 云南省教育厅科学研究基金项目(2020J0742)。
关键词 金沙江 云南段 地震灾害 人口 风险性分布 多维度识别 Jinsha River Yunnan section earthquake disaster population risk distribution multidimensional recognition
  • 相关文献

参考文献19

二级参考文献168

共引文献170

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部