期刊文献+

随机跨网络传播多社交网络影响力最大化

Multi-Social Network Influence Maximization Considering Random Cross Network Propagation
下载PDF
导出
摘要 多社交网络中的同一实体用户可将信息从一个社交网络平台传播至另一个社交网络平台,同时还存在随机跨网络传播现象。本文针对多社交网络影响力最大化问题进行研究,提出基于随机网络传播行为的多社交网络合并算法,并在合并后的网络上求解影响力最大化问题。实验结果表明,随机跨网络行为对信息在多社交网络传播时具有促进作用。 In multiple social networks, the user can spread information from one social network platform to another. Moreover, there is a phenomenon of random cross network propagation in multiple social networks. Aiming at the problem of maximizing the influence of multiple social networks, this paper proposes a multi social network merging algorithm based on random network propagation behavior. The experimental results show that random cross network behavior can promote the dissemination of information in multiple social networks.
作者 曾燕清 ZENG Yanqing(College of Electronics and Information Science,Fujian Jiangxia University,Fuzhou,China,350108)
出处 《福建电脑》 2021年第10期27-31,共5页 Journal of Fujian Computer
关键词 多社交网络 影响力 网络传播 Multiple Social Networks Effect Network Communication
  • 相关文献

参考文献3

二级参考文献82

  • 1Misner I R. The Word's Best Known Marketing Secret, Building Your Business with Word-of-Mouth Marketing. San Jose. California. USA, Bard Press. 1999.
  • 2Domingos P. Richardson M. Mining the network value of customers/ /Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco. USA. 2001, 57-66.
  • 3Richardson M. Domingos P. Mining knowledge-sharing sites for viral marketing/ /Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton. Canada. 2002, 61-70.
  • 4Kempe D. Kleinberg J. Tardos E. Maximizing the spread of influence through a social network/ /Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington. USA. 2003: 137-146.
  • 5Kempe D. Kleinberg J. Tardos E. Influential nodes in a diffusion model for social networks/ /Caires L. Italiano G F. Monteiro L. et al, eds. Automata. Languages and Programming. Libson , Portugal. 2005, 1127-1138.
  • 6Chen W. Wang C. Wang Y. Scalable influence maximization for prevalent viral marketing in large- scale social networks/ / Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington. USA. 2010, 1029-1038.
  • 7Leskovec J. Krause A. Guestrin C. et al. Cost-effective outbreak detection in networks/ /Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose. USA. 2007, 420-429.
  • 8Chen W. Wang Y. Yang S. Efficient influence maximization in social networks/ /Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris. France. 2009, 199-208.
  • 9Goyal A. Lu W. Lakshmanan L V. CELF++, Optimizing the greedy algorithm for influence maximization in social networks/ /Proceedings of the 20th International Conference Companion on World Wide Web. Hyderabad. India. 2011, 47-48.
  • 10Kimura M. Saito K. Approximate solutions for the influence maximization problem in a social network/ /Gabrys B. Howlett R J. Jain L C eds. Knowledge-Based Intelligent Information and Engineering Systems. Bournemouth , UK. 2006, 937-944.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部