期刊文献+

SOME OSCILLATION CRITERIA FOR A CLASS OF HIGHER ORDER NONLINEAR DYNAMIC EQUATIONS WITH A DELAY ARGUMENT ON TIME SCALES

下载PDF
导出
摘要 In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.
作者 Xin WU 吴鑫(School of Sciences,East China JiaoTong University,Nanchang 330013,China)
机构地区 School of Sciences
出处 《Acta Mathematica Scientia》 SCIE CSCD 2021年第5期1474-1492,共19页 数学物理学报(B辑英文版)
基金 supported by the Jiangxi Provincial Natural Science Foundation(20202BABL211003) the Science and Technology Project of Jiangxi Education Department(GJJ180354).
  • 相关文献

参考文献5

二级参考文献38

  • 1杨军,关新平,刘树堂.具强迫项高阶非线性中立型差分方程的振动性与渐近性[J].纯粹数学与应用数学,1999,15(4):30-36. 被引量:1
  • 2Parhin, Ratn R N. Oscillation criteria for forced first order neutral differential equations with variable coefficients [J]. J. Math. Anal. Appl., 2001,256(2):525-541.
  • 3Zhang Q X, Yah J R. Oscillation behavior of even order neutral differential equations with variable coefficients[J]. Appl. Math. Letters, 2006,19(11):1202-1206.
  • 4Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications[M]. Boston: Birkhauser, 2001.
  • 5曹贤通,皮上超,俞元洪.带强迫项高阶中立型微分方程的振动性和非振动性[J].数学的实践与认识,2007,37(18):201-204. 被引量:8
  • 6Akin-Bohner E, Bohner M, Saker S H. Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations. Electron Trans Numer Anal, 2007, 27:1-12.
  • 7Atkinson F V. On second order nonlinear oscillations. Pacific J Math, 1955, 5:643-647.
  • 8Baoguo J, Erbe L, Peterson A. Kiguradze-type oscillation theorems for second order superlinear dynamic equations on time scales. Can Math Bull, 2011, 54:580 592.
  • 9Belohorec S. Two remarks on the properties of solutions of a nonlinear differential equation. Acta Fac Rerum Natur Univ Comenian Math Publ, 1969, 22:19-26.
  • 10Bohner M, Hassan T S. Oscillation and boundedness of solutions to first and second order forced functional dynamic equations with mixed nonlinearities. Appl Anal Discrete Math, 2009, 3:242 252.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部