期刊文献+

多头自注意力机制Siamese网络文本相似度计算方法 被引量:4

Siamese network text similarity calculation with multi-head self-attention mechanism
下载PDF
导出
摘要 文本相似度的计算是自然语言处理的核心问题.现有的文本相似度计算方法,存在对于深层次的语义信息提取的不充分,且对长文本的相似度计算能力有限的问题.针对现有文本相似度计算方法的缺陷,提出一种基于多头自注意力机制的Siamese网络,利用双向GRU为基础的Siamese模型精确提取文本样本中上下文的语义信息,同时加入多头自注意力机制学习长文本深层次的语义信息.在公开的SICK数据集上,实验结果表明加入多头自注意力机制的Bi-GRU Siamese网络模型可以学习到长文本深层次的语义信息,对比其他的文本相似度的计算方法,相关系数显著提升,处理长文本效果较好. Calculating text similarity is the key to natural language processing.Existing text similarity calculation methods can not fully extract deep semantic information.And the ability to calculate the similarity of long texts is limited.Aiming at the shortcoming of existing text similarity calculation methods,a Siamese network based on multi-head self-attention mechanism is proposed.This method uses the Siamese model based on bidirectional GRU to accurately extract the semantic information of the context.Then learning deep semantic information of long text by adding multi head self-attention mechanism.Experimental results show that Siamese network with multi-head self-attention mechanism can learn the deep semantic information of long text in the SICK dataset.Compared with other text similarity calculation methods,the correlation coefficient of the proposed method is significantly improved.The effect of processing long text is improved.
作者 曹小鹏 周凯强 CAO Xiaopeng;ZHOU Kaiqiang(School of Computer Science and Technology,Xi′an University of Posts&Telecommunications,Xi′an 710121,Shaanxi,China)
出处 《微电子学与计算机》 2021年第10期15-20,共6页 Microelectronics & Computer
基金 国家自然科学基金(61136002) 陕西省重点研发计划项目(2021GY-181) 陕西省教育厅科技计划资助项目(2013jk1128)。
关键词 Siamese网络 文本相似度 多头自注意力机制 双向GRU SICK数据集 Siamese network Text similarity Multi-head Self-Attention mechanism bidirectional GRU SICK dataset
  • 相关文献

参考文献5

二级参考文献61

  • 1秦春秀,赵捧未,刘怀亮.词语相似度计算研究[J].情报理论与实践,2007,30(1):105-108. 被引量:30
  • 2刘宏哲.文本语义相似度计算方法研究[D].北京:北京交通大学,2012.
  • 3曹恬,周丽,张国煊.一种基于词共现的文本相似度计算[J].计算机工程与科学,2007,29(3):52-53. 被引量:14
  • 4Furlan B,Batanovi?V,Nikoli?B.Semantic similarity of short texts in languages with a deficient natural language processing support[J].Decision Support Systems,2013,55(3):710-719.
  • 5Mihalcea R,Corley C,Strapparava C.Corpus-based and knowledge-based measures of text semantic similarity[C]//Proceedings of the AAAI,2006,6:775-780.
  • 6Park E K,Ra D Y,Jang M G.Techniques for improving web retrieval effectiveness[J].Information Processing&Management,2005,41(5):1207-1223.
  • 7Manning C D,Raghavan P,Schütze H.Introduction to information retrieval[M].Cambridge:Cambridge University Press,2008.
  • 8Ramage D,Rafferty A N,Manning C D.Random walks for text semantic similarity[C]//Proceedings of the 2009Workshop on Graph-based Methods for Natural Language Processing.[S.l.]:Association for Computational Linguistics,2009:23-31.
  • 9Agirre E,Diab M,Cer D,et al.Semeval-2012 task 6:A pilot on semantic textual similarity[C]//Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1:Proceedings of the Main Conference and the Shared Task,and Volume 2:Proceedings of the Sixth International Workshop on Semantic Evaluation.[S.l.]:Association for Computational Linguistics,2012:385-393.
  • 10Leacock C.Combining local context and Word Net sense similarity for word sense identification[M]//In Word Net,an Electronic Lexical Database.[S.l.]:The MIT Press,1998.

共引文献126

同被引文献44

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部