摘要
目的基于大数据的整理和生物信息学的分析方法,筛选出与脓毒症患者预后相关的关键基因,为脓毒症患者提供新的分子治疗靶点,改善脓毒症患者的预后。方法此项研究基于来自基因表达数据库(GEO)的GSE66099的微阵列数据(脓毒症18例,正常组47例)进行分析,将数据进行归一化整理后,使用iDEP这个平台对数据进行分析,获得脓毒症患者和正常对照组之间的差异表达基因(DEGs),利用DAVID进行基因本体(GO)功能注释和京都基因与基因组百科全书(KEGG)通路富集分析。利用String数据库和Cytoscape软件构建蛋白质-蛋白质相互作用(PPI)网络筛选关键基因,利用GSE65682的临床数据探究关键基因与预后的关系。结果筛选出1476个差异基因,鉴定了5个脓毒症预后相关的关键基因,分别是LCP2、FYN、MAD2L1、KPNB1和GRB2。其中LCP2、FYN、GRB2、KPNB1与脓毒症患者预后呈正相关,MAD2L1与脓毒症患者预后呈负相关。结论LCP2、FYN、MAD2L1、GRB2和KPNB1是与脓毒症患者预后相关的关键基因,MAD2L1与脓毒症患者预后呈负相关,LCP2、FYN、GRB2、KPNB1与脓毒症患者预后呈正相关。
Objective Based on the collation of big data and bioinformatics analysis methods,key genes related to the prognosis of sepsis patients are screened to provide new moleculaRtherapeutic targets to improve the prognosis of sepsis patients.Methods This study was based on microarray data(sepsis=18 cases,normal group=47 cases)of GSE66099 from the Gene Expression Database(GEO).AfteRnormalizing and organizing the data,it was analyzed using the platform iDEP to obtain differentially expressed genes(DEGs)between sepsis patients and normal controls,using DAVID foRgene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.The String database and Cytoscape software were used to construct a protein-protein interaction(PPI)network to screen foRkey genes,and clinical data from GSE65682 was used to explore the relationship between hub genes and prognosis.Results A total of 1476 genes were designated as DEGs in sepsis cases when compared with the controls,and five hub genes were identified,including LCP2,FYN,MAD2L1,KPNB1 and GRB2,and LCP2,FYN,GRB2 and KPNB1,showing a positive correlation with prognosis in patients with sepsis,while MAD2L1 was negatively associated with the prognosis of sepsis patients.Conclusion LCP2,FYN,MAD2L1,GRB2 and KPNB1 are the hub genes associated with sepsis prognosis.LCP2,FYN,GRB2 and KPNB1 show a positive correlation with prognosis in patients with sepsis,while MAD2L1 is negatively associated with the prognosis of sepsis patients.
作者
罗美倩
于洋
胡迎春
伍长学
Luo Meiqian;Yu Yang;Hu Yingchun(Department of Anesthesiology,Department of Emergency Medicine,Department of Critical Care Medicine,the Affiliated Hospital of Southwest Medical University,Luzhou,Sichuan 646000,China.)
出处
《四川医学》
CAS
2021年第9期865-870,共6页
Sichuan Medical Journal
基金
四川省科技厅平台项目(编号:2019JDPT0003
编号:2020YFS0517)
四川省卫生健康委员会科研课题(编号:17PJ396)。