期刊文献+

基于最优几何匹配的时间连贯3D动画重建

Time coherent 3D animation reconstruction based on optimal geometric matching
下载PDF
导出
摘要 为了优化RGB-D数据的3D重建,提出一种时间连贯的3D重建方法。在数据采集后,从映射到深度数据的RGB数据中提取光学特征点,以得到两个帧之间的初始稀疏3D对应关系。利用最优几何匹配程序进行特征点细化,使用这些特征点对连续帧中的两个3D点云进行独立于帧分辨率的匹配;利用运动向量对齐方法重建时间连贯的3D动画。实验结果表明,所提方法可以重建时间连贯的3D动画。与其他方法相比,所提方法数据丢失较少,在平均误差方面具有一定优势,而且在计算方面也具有高效性。 To optimize the 3D reconstruction of RGB-D data,a time coherent 3D reconstruction method is proposed.After data acquisition,optical feature points are extracted from RGB data mapped to depth data to obtain the initial sparse 3D correspondence between two frames.The optimal geometric matching program is used to refine feature points,and these feature points are used to match two 3D point clouds in consecutive frames independently of frame resolution.The motion vector alignment method is used to rebuild a 3D animation.The experimental results show that the proposed method can reconstruct 3D animation with temporal coherence.Compared with other methods,the data loss is less,the average error has some advantages,and the calculation is also efficient.
作者 王建华 冉煜琨 WANG Jianhua;RAN Yukun(School of Engineering and Technology,Chengdu University of Technology,Leshan 614000,China)
出处 《电子设计工程》 2021年第20期36-42,共7页 Electronic Design Engineering
基金 四川省重点实验室开放基金重点项目(scsxdz2019zd01)。
关键词 RGB-D数据 3D重建 特征点 最优几何匹配 运动向量对齐 平均误差 RGB-D data 3D reconstruction feature point optimal geometric matching motion vector alignment average error
  • 相关文献

参考文献12

二级参考文献105

  • 1郑立国,罗江林,许舸.基于Kinect的动作捕捉系统的实现[J].吉林大学学报(工学版),2013,43(S1):249-255. 被引量:22
  • 2Wang L,Hu W,Tan T.Recent developments in human motion analysis[J].Pattern Recognition,2003,36(3):585-601.
  • 3Crowley J L,Berard F,Coutaz J.Finger tracking as an input device for augmented reality[C]//Proceedings of the International Workshop on Automatic Face and Recognition,1995:195-200.
  • 4Quek F K H,Mysliwiec T,Zhao M.Finger mouse:a freehand pointing interface[C]//Proceedings of the International Workshop on Automatic Face and Recognition,1995:372-377.
  • 5Brown T,Thomas R C.Finger tracking for the digital desk[C]//1st Australasian User Interface Conference.Canberra,Australia:INSPEC,2000:11-16.
  • 6Zeng J,Wang Y,Turner R,et al.Vision based finger tracking of breast palpation for improving breast selfexamination[C]//Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1996:148-149.
  • 7Davis J,Shah M.Visual gesture recognition[J].Visual Image Signal Process,1994,141(2):101-106.
  • 8Dorfmuller-Ulhaas K,Schmalstieg D.Finger tracking for interaction in augmented environments[C]//Proceedings of IEEE and ACM International Symposium on Augmented Reality,2001:29-30.
  • 9Zeng J,Wang Y,Turner R,et al.Color-feature finger tracking for breast palpation quantification[C]//Proceedings of IEEE International Conference on Robotic and Albuquerque,1997:2565-2570.
  • 10Raheja J L,Chaudhary A,Singal K.Tracking of fingertips and centers of palm using Kinect[C]//Proceedings of the 3rd International Conference on Computational Intelligence,Modelling and Simulation.Los Alamitos:IEEE Computer Society Press,2011:248-252.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部