期刊文献+

Using UAV to Detect Truth for Clean Data Collection in Sensor⁃Cloud Systems 被引量:1

下载PDF
导出
摘要 Mobile edge users(MEUs)collect data from sensor devices and report to cloud systems,which can facilitate numerous applications in sensor‑cloud systems(SCS).However,because there is no effective way to access the ground truth to verify the quality of sensing devices’data or MEUs’reports,malicious sensing devices or MEUs may report false data and cause damage to the platform.It is critical for selecting sensing devices and MEUs to report truthful data.To tackle this challenge,a novel scheme that uses unmanned aerial vehicles(UAV)to detect the truth of sensing devices and MEUs(UAV‑DT)is proposed to construct a clean data collection platform for SCS.In the UAV‑DT scheme,the UAV delivers check codes to sensor devices and requires them to provide routes to the specified destination node.Then,the UAV flies along the path that enables maximal truth detection and collects the information of the sensing devices forwarding data packets to the cloud during this period.The information collected by the UAV will be checked in two aspects to verify the credibility of the sensor devices.The first is to check whether there is an abnormality in the received and sent data packets of the sensing devices and an evaluation of the degree of trust is given;the second is to compare the data packets submitted by the sensing devices to MEUs with the data packets submitted by the MEUs to the platform to verify the credibility of MEUs.Then,based on the verified trust value,an incentive mechanism is proposed to select credible MEUs for data collection,so as to create a clean data collection sensor‑cloud network.The simulation results show that the proposed UAV‑DT scheme can identify the trust of sensing devices and MEUs well.As a result,the proportion of clean data collected is greatly improved.
出处 《ZTE Communications》 2021年第3期30-45,共16页 中兴通讯技术(英文版)
基金 National Natural Science Foundation of China under Grant No.62032020 Hunan Science and Technology Plan⁃ning Project under Grant No.2019RS3019 the National Key Research and Development Program of China under Grant 2018YFB1003702.
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部