期刊文献+

基于CNN-seq2seq的运动心率检测系统 被引量:4

A study of heart rate measurement systembased on CNN-seq2seq under the movement condition
下载PDF
导出
摘要 针对当前可穿戴式心率检测设备在运动条件下的心率测量准确度不高的问题,提出了一种卷积神经网络结合序列到序列网络(CNN-seq2seq)的深度学习算法,提取在运动状态下的光电容积脉搏波(photoplethysmograph,PPG)中的心率值的方法.结合卷积神经网络在特征提取方面的特点,并利用长短期记忆网络在时序数据处理上的优势,建立了卷积神经网络结合序列到序列的+注意力机制的网络模型.方法采集了30名身体健康的受试者在静止、行走、慢跑和快跑四个状态下的PPG信号,并通过有抗干扰能力的心电设备同步采集他们的心电(electrocardiogram,ECG)信号,将PPG信号作为神经网络输入信号,将ECG信号简化后保留心率特征,作为网络标签,然后对CNN-seq2seq网络进行训练,网络输出得到具有准确心率特征的类PPG信号,从而实现对运动条件下的心率测量.将CNN-seq2seq网络输出结果与对应的ECG信号计算每分钟心率值,心率估计的平均误差和均方误差为0.25±1.31.实验结果证明:CNN-seq2seq网络模型对于运动心率预测能得到比较理想的结果.这为实现运动心率的便携式测量提供了一种可行方案. To address the problem of low accuracy of heart rate measurement under the movement condition of the wearable device,a deep learning algorithm based on CNN-seq2seq is proposed to extract the accurate heart rate value in photo plethysmograph(PPG).Combining the characteristics of CNN in feature extraction and taking the advantages of LSTM in time series data processing,CNN-seq2seq+Attention Mechanism network model is applied.30 healthy subjects are collected and their PPG signals at rest,walking,jogging and running states are recorded,and acquire their ECG signal synchronously through an ECG(electrocardiogram,ECG)device with strong anti-jamming ability.The PPG and the ECG signal are worked as the neural network input and input signals,respectively.These signals are used for CNN-seq2seq network training to get accurate heart rate of similar PPG signals,realizing the heart rate measurement under the movement condition.Comparing the output result of CNN-seq2seq network with the corresponding ECG signal calculate the heart rate per minute,the error of heart rate estimation is 0.25±1.31.The experimental results show that CNN-seq2seq network model can predict relatively ideal results for the extraction of heart rate in movement condition.The algorithm provides a feasible method for the practical measurement of heart rate under the movement condition.
作者 覃凯 张绪 龚佳琪 高军峰 QIN Kai;ZHANG Xu;GONG Jiaqi;GAO Junfeng(College of Biomedical Engineering,South-Central University for Nationalities,Wuhan 430074,China)
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2021年第5期489-495,共7页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(81271659,61773408) 中央高校基本科研业务费专项资金项目(CZZ19004,CZY20039)。
关键词 运动心率测量 深度学习 脉搏 CNN网络 seq2seq网络 heart rate measurement under movement condition deep learning pulse CNN Seq2Seq
  • 相关文献

参考文献6

二级参考文献51

  • 1张晓光,王艳芬,王刚,刘卫东.基于DSP的自适应噪声消除[J].电视技术,2009,0(S1):78-80. 被引量:2
  • 2吴学思.心率在心血管疾病中的意义[J].中华内科杂志,2006,45(7):601-602. 被引量:67
  • 3彭桂力,刘知贵,鲜华,李婧,王彩峰.基于AVR单片机的血压、脉搏装置设计[J].计算机工程,2007,33(12):247-250. 被引量:11
  • 4ALWAN A. Global Status Report on Noncommunicable Diseases 2010 [ M ]. Geneva: World Health Organization, 2011 : 1-176.
  • 5FERNANDES R A, VAZ RONQUE E R, VENTURINI D, et al. Resting heart rate: its correlations and potential for screening metabolic dysfunctions in adolescents[ J]. BMC Pediatrics, 2013, 13(1) :48.
  • 6PARAI)ISO M, PIETROSANTI S, SCALZI S, et al. Experimental heart rate regulation in Cycle-Ergometer exercises [ J ]. IEEE Transactions on Biomedical Engineering, 2012, 60( 1 ) : 135-139.
  • 7BAUMGARTNER B, RODEL K, SCHREIBER U, et al. A web-based survey for expert review of monitor alarms [ C ]//Computing in Cardiology ( CinC ). Krakow: IEEE, 2012, 209-212.
  • 8MONKARESI H, CALVO R, YAN Hong. A machine learning approach to improve eontaetless heart rate monitoring using a Webcam [ J 1- IEEE Journal of Biomedical and Health Informatics, 2013, 18 (4) : 1153-1160.
  • 9ABOUKHALIL A, NIELSEN L, SAEED M, et al. Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform [ J 1. Journal of Biomedical Informatics, 2008, 41 (3) :442-451.
  • 10孙佳新.基于信号质量评估的可穿戴运动心电监护系统[D].上海:东华大学,2010.

共引文献58

同被引文献33

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部