期刊文献+

基于GM-Markov模型的船舶水上交通安全综合指数预测研究 被引量:1

Study on Prediction of Ship Maritime Traffic Safety Comprehensive Index Based on GM-Markov Model
下载PDF
导出
摘要 为了更精确地预测船舶水上交通安全综合指数的变化趋势,以2004—2013年综合指数的数列为基础建立GM-Markov模型,对其分别进行灰色预测和GM-Markov预测;检验两种不同模型的预测研究结果的精度,并对预测值和实际值进行拟合检查;然后用2010—2019年的数据重新构造模型,预测了2020、2021年的预测值。结果表明:GM-Markov模型在短期内的预测能克服灰色预测的不足,且GM-Markov预测值曲线和实际数据曲线走势更加吻合;GM-Markov模型在船舶水上交通安全综合指数的预测上具有较高的可信度,为我国船舶水上交通安全保障的研究决策提供了一种新的方法。 In order to predict the change trend of the comprehensive index of marine traffic safety more accurately,GM-Markov model is established based on the number of comprehensive index from 2004 to 2013,and the grey prediction and GM-Markov prediction are made respectively.The accuracy of the prediction research results of the two different models is tested,and the fitting of the predicted and actual values is checked.Then the model is reconstructed with the data from 2010 to 2019,and the predicted values in 2020 and 2021 are predicted.The results show that the GM-Markov model can overcome the shortage of grey prediction in the short term,and the trend of the GM-Markov predicted value curve is more consistent with the actual data curve.The GM-Markov model has a high reliability in predicting the comprehensive index of marine traffic safety,which provides a new method for the research and decision-making of marine traffic safety in China.
作者 贾帅林 杜柏松 刘然 秦世云 JIA Shuailin;DU Baisong;LIU Ran;QIN Shiyun(School of Naval Architecture and Maritime,Zhejiang Ocean University,Zhoushan 316022,China)
出处 《机械工程师》 2021年第10期89-92,共4页 Mechanical Engineer
基金 国家级大学生创新创业训练计划项目(202010340034) 浙江海洋大学2021年度研究生教育质量系列工程“船舶海上交通事故案例库”(111810641211)。
关键词 船舶水上交通 灰色预测 GM-Markov模型 安全综合指数 maritime transportation of ships grey prediction,GM-Markov model safety comprehensive index
  • 相关文献

参考文献4

二级参考文献44

  • 1田丽娟,张矢宇,李娜.长江干线水上交通安全实时预警指标体系研究[J].交通信息与安全,2013,31(2):69-73. 被引量:7
  • 2朱红兵,何丽娟.在SPSS10.0中进行数据资料正态性检验的方法[J].首都体育学院学报,2004,16(3):123-125. 被引量:33
  • 3盛骤,谢式千,潘乘毅.概率论与数理统计[M].北京:高等教育出版社,2010.
  • 4Bala Murugan Gopalsamy, Biswanath Mondal, Sukamal Ghosh. Optimi- sation of machining parameters for hard machining : grey relational theo- ry approach and ANOVA [ J ]. The International Journal of Advanced Manufacturing Technology, 2009,45 ( 11 - 12 ) : 1068 - 1086.
  • 5Li Guodong, Daisuke Yamaguchi , Masatake Nagai. A grey-based deci- sion-making approach to the supplier selection problem[ J]. Mathemati- cal and Computer Modelling, 2007,46 ( 3 - 4 ) :573 - 581.
  • 6Li Guodong, Daisuke Yamaguchi, Masatake Nagai. The development of stock exchange simulation prediction modeling by a hybrid grey dynamic model[ J]. The International Journal of Advanced Manufacturing Tech- nology, 2008,36 ( 1 - 2 ) : 195 - 204.
  • 7Guo R, Cheng C Y, Cui Y H. L1-Normed GM( 1,1 ) Models and Reli- ability Analysis [ C ]. IEEE International Conference on Systems, Man and Cybernetics ,2006:775 - 779.
  • 8Zhao Qin, Gao Jun, Wu Tianfu, et al. The Grey theory and the prelimi- nary probe into information acquisition technology [ C ]//Proceedings of 2004 IEEE international. Conference on Information acquisition 2004, 1:402 - 404.
  • 9Lee Yishian, Tong Leeling. Forecasting energy consumption using a grey model improved by incorporating genetic programming[ J]. Energy Con- version and Management, 2011,52 ( 1 ) :147 - 152.
  • 10Li Sifeng, Forrest J. Advances in grey systems theory and its applica- tions [ C ]//Proceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services, Nanjin, 2007 : 1 - 6.

共引文献59

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部