期刊文献+

基于CBDT和KNN的地铁施工坍塌事故应急措施生成研究 被引量:4

Generation study on emergency measures of subway collapse based on CBDT and KNN
下载PDF
导出
摘要 为了使历史事故经验在地铁施工坍塌事故的应急决策中起到高效、准确的辅助作用,提出一种基于案例决策理论(case-based decision theory,CBDT)和改进的K近邻(K-nearest neighbor,KNN)算法的地铁施工坍塌事故应急措施生成方法。在CBDT视角下,基于中文分词技术筛选出事故描述单元因素,并将这些因素用于结构化的事故信息记录中,构建历史事故案例库。基于改进的KNN算法,设计了权重、结构相似度、局部相似度、可替代度和全局相似度计算5个步骤组成的事故相似度计算算法,检索相似历史事故,从而输出应急措施建议。最后,通过案例分析验证了本研究方法的可行性和有效性。 In order to make the historical accident experience play an efficient and accurate support role in emergency decision-making of subway construction collapse accidents,a generation method of emergency measures for subway construction collapse accidents based on case-based decision theory(CBDT)and improved K-nearest neighbor(KNN)algorithm was proposed.From the perspective of CBDT,based on Chinese word segmentation technology,the accident description unit factors were screened out to structurally record accident information,then historical accident case database was build.Based on the improved KNN algorithm,a five-step accident similarity calculation algorithm was designed,including weight,structural similarity,local similarity,substitutability and global similarity calculation,to retrieve similar historical accidents and output suggestions on emergency measures.Finally,the feasibility and effectiveness of the method proposed in this study were verified by case study.
作者 陈赟 陈玉斌 刘湘慧 CHEN Yun;CHEN Yu-bin;LIU Xiang-hui(School of Traffic and Transportation Engineering,Changsha University of Science&Technology,Changsha 410114,China)
出处 《长沙理工大学学报(自然科学版)》 CAS 2021年第3期45-54,共10页 Journal of Changsha University of Science and Technology:Natural Science
基金 2018年湖南省应急管理厅安全生产科技研究及推广项目“交通隧道工程施工安全风险预警及管控体系研究” 湖南省交通科技进步与创新项目(201330) 长沙理工大学研究生科研创新项目(CX2020SS19)。
关键词 地铁工程 坍塌 应急措施 案例决策理论 K近邻算法 subway engineering collapse emergency measure case-based decision theory K-nearest neighbor algorithm
  • 相关文献

参考文献22

二级参考文献208

共引文献408

同被引文献43

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部