期刊文献+

Effect of stress paths on failure mechanism and progressive damage of hard-brittle rock 被引量:2

下载PDF
导出
摘要 During deep buried hard-brittle rock tunnel excavation,the surrounding rock experiences a complicated stress path and stress adjustment process.Once the adjusted stress exceeds the ultimate bearing capacity of rockmass,a rock failure mode defined as stress-cracking type will occur.In order to investigate the effect of stress paths on failure mechanism and progressive damage of deep-buried rockmass,the cyclic loading-unloading,loading-unloading,uniaxial,conventional and unloading triaxial compression tests on samples of hard-brittle sandstone were conducted.According to the experimental results,increase in the confining pressure was beneficial to improve the mechanical parameters of rock,but it will reduce the brittle failure features.Compared with conventional triaxial compression,the sandstone under unloading state had more remarkable stress drop and unstable failure characteristics.Meanwhile,it was found that the energy dissipation and energy release in the whole process of rock deformation were the internal power of driven rock progressive damage.With the increase of confining pressure,the energy hardening and energy accumulation features of rock were weakened,while the progressive damage evolution characteristics could be enhanced.In unloading state,more energy could be converted into elastic energy in the energy softening phase(σeb-σP),so that the prepeak damage rate of rock was lower than that of conventional triaxial compression state.Thus,the energy dissipation rate of rock after peak strength decreased linearly with the increase of confining pressure under conventional triaxial compression state,while in unloading state it showed the opposite law.
出处 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2486-2502,共17页 山地科学学报(英文)
基金 supported by the National Natural Science Foundation of China(No.52008351) the Sichuan Science and Technology Program(No.2021YJ0539) the project funded by China Postdoctoral Science Foundation(No.2020TQ0250) the Open Foundation of MOE Key Laboratory of Engineering Structures of Heavy Haul Railway(Central South University)(No.2020JZZ01) the Open Foundation of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(No.SKLGP2021K019)。
  • 相关文献

参考文献1

二级参考文献19

共引文献653

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部