期刊文献+

基于支持向量机的典型船体结构裂纹损伤模式分类研究

Research on classification of damage modes of typical hull structures based on support vector machine
下载PDF
导出
摘要 为了识别典型船体结构裂纹损伤,提出基于支持向量机(SVM)的分类方法,采用固有时间尺度分解(ITD)和奇异值分解(SVD)方法对振动信号进行特征向量提取,得到训练样本和验证样本数据,应用SVM算法对训练样本数据进行正确的分类。为评估SVM分类准确性,引入BP神经网络算法进行对比分析,2种算法对验证样本进行分类预测,结果证明SVM方法对小样本试验数据进行模式分类具有更高的准确率。对十字加筋板的损伤模式进行分类研究,可对船体局部结构的维修和管理提供更好辅助决策支持。 In order to identify the crack damage of the typical hull structure,the classification method based on support vector machine(SVM)was put forward,the intrinsic time-scale decomposition(ITD)and singular value decomposition(SVD)method was carried out on the vibration signal to extract feature vector and the training sample and verified sample data were acquired.Classification of the training sample data by the SVM algorithm was carried out correctly.In order to evaluate the accuracy of classification method based on SVM algorithm,BP neural network algorithm is introduced for comparative analysis.The two algorithms are used for classification prediction of verified sample data.The results prove that SVM algorithm has higher accuracy in mode classification of small sample test data.The research of classification of damage modes of cross stiffened plates can provide better decision support for the maintenance and management of local hull structures.
作者 张仲良 彭飞 牟金磊 闵少松 ZHANG Zhong-liang;PENG Fei;MU Jin-lei;MIN Shao-song(College of Naval Architecture and Ocean Engineering,Naval University of Engineering,Wuhan 430033,China)
出处 《舰船科学技术》 北大核心 2021年第9期60-63,共4页 Ship Science and Technology
基金 国家自然科学基金资助项目(51779261) 海军工程大学自然科学基金资助项目(20161595)。
关键词 支持向量机 固有时间尺度分解 奇异值分解 BP神经网络 support vector mmachine intrinsic time-scale decomposition singular value decomposition BP neural network
  • 相关文献

参考文献5

二级参考文献58

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部