摘要
由于短期负荷非静止和强随机特征,难以准确预测负荷行为。为此,提出了改进的短期负荷预测方法。应用集合经验模态分解算法,依据频率从低到高将负荷分组;通过MLR预测平滑、周期的低频部分,保持高效的计算能力,而对具有强随机性的高频部分,则通过LSTM进行预测,即采用结合MLR和LSTM这两种方法获得实际预测负荷。最后,通过实验计算来自中国西部的测试数据,验证该方法的有效性。
Due to the non-stationary and strong stochastic characteristics of short-term load,it is difficult to accurately predict the load behavior.Therefore,an improved short-term load forecasting method is proposed.The load is grouped according to the frequency from low to high by ensemble empirical mode decomposition algorithm;MLR is used to predict the smooth and periodic low-frequency part to maintain efficient computing power,while LSTM is used to predict the high-frequency part with strong randomness,that is,MLR and LSTM are combined to obtain the actual predicted load;The effectiveness of the method is verified by the experimental calculation of the test data from Western China.
作者
武国良
祖光鑫
杨志军
秦立志
WU Guoliang;ZU Guangxin;YANG Zhijun;QIN Lizhi(State Grid Heilongjiang Electric Power Co.,Ltd.Electric Power Research Institute,Harbin 150030,China;State Grid Heilongjiang Electric Power Co.,Ltd.Heihe Power Supply Company,Heihe 164300,China;State Grid Heilongjiang Electric Power Co.,Ltd.Harbin Power Supply Company,Harbin 150070,China)
出处
《黑龙江电力》
CAS
2021年第4期297-301,共5页
Heilongjiang Electric Power
基金
国网黑龙江省电力有限公司科技项目《采用人工智能的哈尔滨地区负荷预测及关键因素分析》(项目编号:52243719000T)。
关键词
集合经验模态分解算法
LSTM神经网络
多元线性回归
短期负荷预测
ensemble empirical mode decomposition algorithm
LSTM neural networks
multivariable linear regression
short-term load forecasting