期刊文献+

基于宽度学习系统的内河航道船舶轨迹分类算法 被引量:2

Classification algorithm of ship trajectory in inland waterways based on broad learning system
下载PDF
导出
摘要 为解决内河航道中具有不同运动模式的船舶轨迹识别问题,提出一种基于宽度学习系统(broad learning system,BLS)的船舶轨迹分类算法。对通航区域进行划分并制定轨迹筛选规则以构建标签矩阵。利用分段三次Hermite插值法分别从轨迹点记录时间上等时距和轨迹点空间分布上等间距两个角度,从原轨迹数据中进行特征点坐标的提取以构建轨迹特征矩阵。将标签矩阵和轨迹特征矩阵代入BLS以实现分类算法的训练与测试。以京杭运河淮安段交叉航道AIS数据为实例,进行轨迹分类实验。结果表明,基于BLS的船舶轨迹分类算法在分类精度和训练耗时上均优于基于反向传播神经网络和支持向量机的轨迹分类算法。 In order to solve the problem of identifying ship trajectories with different motion patterns in inland waterways,a ship trajectory classification algorithm based on the broad learning system(BLS)is proposed.The navigation area is divided and the trajectory selection rules are formulated to construct the label matrix.The piecewise cubic Hermite interpolation algorithm is used to extract the characteristic point coordinates from the original trajectory data from the perspectives of the equal time interval in the recording time and the equal space interval in the spatial distribution to construct the trajectory characteristic matrices.In order to train and test the classification algorithm,the label matrix and trajectory characteristic matrices are put into the BLS.The AIS trajectory data of the Huai’an section of the Beijing-Hangzhou Canal are selected for the trajectory classification experiment.The result shows that the ship trajectory classification algorithm based on the BLS is superior to those based on the back propagation neural network and the support vector machine in classification accuracy and training time.
作者 王颢程 左毅 李铁山 王震宇 WANG Haocheng;ZUO Yi;LI Tieshan;WANG Zhenyu(Navigation College,Dalian Maritime University,Dalian 116026,Liaoning,China;Maritime Big Data & Artificial Intelligent Application Centre, Dalian Maritime University, Dalian 116026, Liaoning, China)
出处 《上海海事大学学报》 北大核心 2021年第3期91-100,共10页 Journal of Shanghai Maritime University
基金 国家自然科学基金(51939001,61976033,U1813203,61803064,61751202) 中央高校基本科研业务费专项资金(3132019345) 辽宁省自然科学基金(2019-ZD-0151,2020-HYLH-26) 辽宁省兴辽英才计划(XLYC1807046,XLYC1908018) 大连市科技创新基金(2018J11CY022)。
关键词 内河运输 船舶轨迹 轨迹分类 宽度学习系统 inland waterway transport ship trajectory trajectory classification broad learning system
  • 相关文献

参考文献8

二级参考文献69

  • 1郭浩,张晰,安居白,李冠宇.基于船舶AIS信息的可疑船只监测研究[J].交通信息与安全,2013,31(4):67-72. 被引量:11
  • 2徐萃薇.计算方法引论[M].北京:高等教育出版社,1996.
  • 3国际海事组织.通用船载自动识别系统国际标准汇编[G].袁安存,张淑芳编译.大连:大连海事大学出版社,2005.
  • 4LIU Jingxian,HAN Xiaobao,YI Xiangping.Calculation of restricted channel transit capacity based on the queuing theory[C]//Proc Asia Navi-gation Conf 2009,Shizuoka,Japan:Japan Institute of Navigation,2009:81-86.
  • 5YANG Xingyan,JI Hua,LI Wei.Study on the navigation capacity of the approach channel of Tianjin Port[J].Port Technol Int,2006(34):45-47.
  • 6BLUME A L,HIGH J P.Toward a better understanding of waterway capacity[J].On Course PIANC Mag AIPCN,2005(118):27-34.
  • 7EMTISSAL M H L.The maximum shipping capacity of the new physical layout of the Suez Canal[J].Egypt Comput J,1987(4):79-96.
  • 8FRANKEL E G,LIM C S.Capacity algorithms for navigational channels[C]//PIANC 27th Int Navigation Congress,Osaka,Japan.1990:97-103.
  • 9吴兆麟,朱军.海上交通工程[M].大连海事大学出版社,1999:117-121.
  • 10宋宇辰,宋飞燕,孟海东.基于密度复杂簇聚类算法研究与实现[J].计算机工程与应用,2007,43(35):162-165. 被引量:16

共引文献148

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部