期刊文献+

Strategic sill pillar design for reduced hanging wall overbreak in longhole mining 被引量:2

下载PDF
导出
摘要 Steeply dipping,vein and tabular orebodies are traditionally extracted with longitudinal retreat mining methods such as Eureka and Avoca in a bottom-up sequence with delayed backfill.To increase productivity,sill pillars in the orebody are used to separate mining zones thus allowing production to take place simultaneously in two or more zones.While such mining methods are productive,they may be accompanied with high volumes of hanging wall overbreak causing significant unplanned ore dilution.In this work,it is shown through a mine design case study of a narrow vein deposit that a sill pillar could also play a significant role in limiting hanging wall overbreak.To demonstrate the role of sill pillar,a novel numerical modelling scheme is proposed to account for progressive stope wall overbreak.A numerical modelling approach of element death and rebirth is developed to allow for the detected stope overbreak to be immediately removed and replaced with backfill material before upper-level stope extraction.It is further shown that the average overbreak volume could be reduced by as much as 33%when the sill pillar is strategically placed in the lower half of a mine plan.
出处 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期975-982,共8页 矿业科学技术学报(英文版)
基金 financially supported by the Natural Science and Engineering Research Council(NSERC)-Discovery Grants Program。
  • 相关文献

参考文献4

二级参考文献2

共引文献20

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部