期刊文献+

LiFePO_(4)锂离子动力电池45℃容量衰减机理 被引量:3

Analysis of mechanism of capacity attenuation of LiFePO_(4) lithium-ion power battery at 45℃
下载PDF
导出
摘要 以电动汽车的方型LiFePO_(4)/石墨动力实验电池为研究对象,探究其在45℃恒温箱下1C充放电循环的失效机理。通过对电池进行解剖,系统分析了电池循环前后正负极片的厚度、形貌、结构和克容量的变化。随着电池在45℃高温下循环,电解液分解以及Fe溶出损失、SEI膜再生长,消耗大量的活性锂,交流内阻增加导致电化学极化增大,活性锂消耗引起负极容量损失为6.7%,负极结构变化造成的容量损失为22.64%。结果表明石墨负极动力学性能的衰减是电池失效的主要因素。 Taking the square LiFePO_(4)(LFP)/graphite power battery as the research object,the failure mechanism is explored when the battery cycles with 1C current at 45℃.By dissecting the battery,the changes in the thickness,morphology,structure and gram capacity of the positive and negative plates before and after the battery cycle are systematically analyzed.With the continuous cycling of the battery at 45℃,the electrolyte in the battery is gradually decomposed,the loss of Fe dissolution is aggravated,and the growth of SEI film is accelerated,which leads to the large consumption of active lithium and the increase of EIS and battery polarization.The results indicate that the capacity loss of anode which is caused by active lithium consumption and structure change is higher than that in the cathode,which are 6.7%and 22.64%,respectively.Therefore,the battery failure is mainly resulted by the attenuation of dynamic performance of the graphite negative electrode.
作者 张凯博 徐晓明 薛有宝 万柳 田威 曾涛 张亚婷 ZHANG Kaibo;XU Xiaoming;XUE Youbao;WAN Liu;TIAN Wei;ZENG Tao;ZHANG Yating(Tianjin Lishen Battery Joint-Stock Co.,Ltd.,Tianjin 300384,China;College of Chemistry and Chemical Engineering,Xi’an University of Science and Technology,Xi’an 710054,Shaanxi,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2021年第10期5396-5401,共6页 CIESC Journal
关键词 动力电池 磷酸铁锂 电化学 动力学 power battery LiFePO_(4) electrochemistry dynamics film
  • 相关文献

参考文献7

二级参考文献26

  • 1唐致远,陈玉红,卢星河,谭才渊.锂离子电池安全性的研究[J].电池,2006,36(1):74-76. 被引量:55
  • 2Yin Y H, Gao M X, Pan H G, et al. High-rate capability of LiFe- POt cathode materials containing FezP and trace carbon [J]. J Po- wer Sources, 2012,199 : 256.
  • 3Wang J, Liu P, Hicks-Garner J, et al. Cycle-life model for graphite- LiFePO4 cells [J]. J Power Sources, 2011,196(8) : 3942.
  • 4Zhang Y C, Wang C Y, Tang X D. Cycling degradation of an auto- motive LiFePO4 lithium-ion battery [J]. J Power Sources,2011,196 (3):1513.
  • 5Sarasketa-Zabala E, Gandiaga I, Martinez-Laserna E, et al. Cycle ageing analysis of a LiFePO4/graphite cell with dynamic model vali- dations: Towards realistic lifetime predictions [J]. J Power Sources, 2015,275:573.
  • 6Duharry M, Liaw B Y, Chen M S, et al. Identifying battery aging mechanisms in large format Li ion cells[J]. J Power Sources,20110 196(7) :3420.
  • 7Dubarry M, Truchot C, Liaw B Y. Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs [J]. J Po- wer Sources, 2014,258 : 408.
  • 8Dubarry M, Liaw B Y. Identify capacity fading mechanism in a corn mercial LiFePO4 cell[J]. J Power Sources, 2009,194 (1) : 541.
  • 9Bloom I, Christophersen J P, Abraham D P, et al. Differential vol- tage analyses of high-power lithium-ion cells-3. Another anode phe- nomenon [J]. J Power Sources,2006,157(1) :537.
  • 10Bloom I, Jansen A N, Abraham D P, et al. Differential voltage ana- lyses of high-power, lithium-ion ceils 1. Technique and application [J]. J Power Sources, 2005,139 (1-2) : 295.

共引文献41

同被引文献10

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部