期刊文献+

高压氢气储运设施泄漏喷射火过程预测模型及其验证 被引量:12

Prediction model for the process of jet fire induced by the leakage of high-pressure hydrogen storage and transportation facilities and its validation
下载PDF
导出
摘要 近年氢能已迅速成为能源领域"新宠",正在迎来快速发展的战略机遇期,但氢安全问题仍然是制约其发展的关键,尤以高压氢气储运设施泄漏后引发喷射火灾害较为突出。为了探究高压氢气泄漏过程并对其引发喷射火灾特性参数变化进行评估,本文采用理论分析和实例验证相结合的方法对两起高压氢气泄漏实验案例(90MPa氢气瓶和6 MPa氢气管道)进行了研究。结果表明:通过模型精度检验,Abel-Nobel气体状态方程适用于当前常用的多种高压氢气储运设施泄漏过程的描述。基于Abel-Nobel气体状态方程、火焰尺寸模型、辐射分数模型和热辐射模型构建的高压氢气泄漏喷射火过程预测模型对实验案例中的泄漏出口气体质量流量、氢喷射火焰长度和辐射热场等的模拟计算结果与实验测量数据基本一致,验证了模型有效性及所含假设合理性。另外在计算中还需要结合实际情况充分考虑高压氢气储运设施发生泄漏时产生的能量损失以及等温流动过程,从而对模型预测精度进行修正。上述结论对于工程实际、氢能安全利用以及灾害预防等具有重要现实意义。 In recent years,hydrogen energy has rapidly become the"new favorite"in the energy field,and is ushering in a period of rapid development of strategic opportunities.However,hydrogen safety issues are still the key to restricting its development,especially the jet fire disaster induced by the leakage of high-pressure hydrogen storage and transportation facilities.In order to explore the process of high-pressure hydrogen leakage and evaluate the changes of the subsequent jet fire characteristics,this paper presents a theoretical analysis and case verification of two experiment cases of high-pressure hydrogen leakage(90 MPa hydrogen reservoir and 6 MPa hydrogen pipeline).The results show that the Abel-Nobel gas state equation is suitable for the description of the leakage process of a variety of high-pressure hydrogen storage and transportation facilities commonly used at present through the model accuracy test.Based on the Abel-Nobel EOS,flame size model,radiation fraction model and thermal radiation model,a prediction model for the process of jet fire resulting from high-pressure hydrogen leakage is established and used to simulate the gas mass flow rate at the leakage exit,hydrogen jet flame length and thermal radiation field in two experiment cases.The calculated results are basically the same with experimental data,which indicates the validity of the prediction model and the rationality of the involved assumptions.Besides,in calculation it also needs to take full account of the energy loss and isothermal flow process during the leakage of high-pressure hydrogen storage and transportation facilities,so as to modify the prediction accuracy of the prediction model.The conclusions hold important practical significance for engineering practice,safe use of hydrogen energy and disaster prevention,etc.
作者 王振华 蒋军成 尤飞 李刚 庄陈浩 赵耀鹏 倪磊 潘勇 李丹 WANG Zhenhua;JIANG Juncheng;YOU Fei;LI Gang;ZHUANG Chenhao;ZHAO Yaopeng;NI Lei;PAN Yong;LI Dan(College of Safety Science and Engineering,Nanjing Tech University,Nanjing 210009,Jiangsu,China;Fire Science and Engineering Institute,Nanjing Tech University,Nanjing 210009,Jiangsu,China;School of Environmental and Safety Engineering,Changzhou University,Changzhou 213164,Jiangsu,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2021年第10期5412-5423,共12页 CIESC Journal
基金 国家自然科学基金项目(51834007) 国家重点研发计划项目(2016YFC0800100)。
关键词 高压氢气 储运设施 喷射火 火焰长度 热辐射 安全 热力学 流体力学 high-pressure hydrogen storage and transportation facilities jet fire flame length thermal radiation safety thermodynamics fluid mechanics
  • 相关文献

参考文献3

二级参考文献34

  • 1罗佐县,曹勇.氢能产业发展前景及其在中国的发展路径研究[J].中外能源,2020,25(2):9-15. 被引量:56
  • 2Tomohiko Imamura, Shota Hamada, Toshio Mogi, et al. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region [J]. International Journal of Hydrogen Energy, 2008, 33(13): 3426-3435.
  • 3Schefer R W, Houf W G, Bourne B, et al. Spatial and radiative properties of an open-flame hydrogen phmae [J]. Hydrogen Energy, 2006, 31(10): 1332-1340.
  • 4Schefer R W, Houf W C, Williams T C, et al. Charac- terization of high-pressure under expanded hydrogen-jet flames [J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081-2093.
  • 5Becker H A, Liang D. Visible lengh of vertical free tur- bulent diffusion flames[J]. Combustion and Flame, 1978, 32: 115-37.
  • 6Kalghatgi G T. Lift-off hights and visible lengths of verti- cal turbulent jet diffusion flames in still air [J]. Combus- tion Science and Technology, 1984, 41 : 17-29.
  • 7Brennan S L, Makarov D V, Molkov V. LES of high pressure hydrogen jet fire [J]. Journal of Loss Prevention in the Process Industries, 2009, 22 (3) : 353-359.
  • 8Onokpe O, Cumber P S. Modelling lifted hydrogen jet fires using the boundary layer equations[J]. Applied ThermalEngineering, 2009, 29(7): 1383-1390.
  • 9Chen Z B. Extension of the Eddy Dissipation Concept and Laminar Smoke Point Soot Model to the Larger Eddy Simulation of Fire Dynamics[D]. London: Kingston University, 2012.
  • 10Smith T F, Shen Z F, Friedman J N. Evaluation of coefficients for the weighted sum of gray gases model [J]. Journal of Heat Transfer, 1982, 104: 602-608.

共引文献62

同被引文献100

引证文献12

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部