期刊文献+

纳米颗粒添加对熔融盐传热特性的影响

Effects of Nanoparticles Addition on Heat Transfer Characteristics of Molten Salt
下载PDF
导出
摘要 熔融盐由于其蒸汽压力低、工作温度高、热稳定性良好等特点,在集中式太阳能热发电系统中作为传热和蓄热工质应用较多。但熔融盐热导率较低,导致发电系统效率降低、能耗增加,发电系统成本升高。向熔融盐中加入纳米颗粒形成熔盐基纳米流体是能够改善熔盐热物性,文章以添加SiO_(2)纳米颗粒的Hitec盐基纳米流体为研究对象,利用平衡分子动力学方法模拟计算热导率,从多角度分析以揭示物理机理。结果表明纳米颗粒质量分数为2%、4%和6%时,纳米流体热导率分别提高了5.75%、6.47%和0.05%。扩散系数结果表明,纳米颗粒添加不会强化基液微对流。分析径向分布函数发现,纳米颗粒添加导致了Na原子和NO_(3)^(-)中N原子间的配位数增加,粒子间作用力增强,引发纳米流体热导率提升。此外,随着温度升高,熔盐纳米流体热导率减小;颗粒质量分数/粒径变大,热导率出现非单调变化。 Molten salt has the advantages of low vapor pressure,high working temperature and good thermal stability,and can be used as heat transfer and heat storage working medium in centralized solar thermal power generation system.However,its thermal conductivity is low,resulting in lower efficiency power generation system,more energy consumption and higher cost.It is an effective way to improve the thermophysical properties of molten salt to form molten salt-based nanofluid by adding nanoparticles into molten salt,so in this paper,the Hitec salt-based nanofluid with SiO_(2) nanoparticles is used as the research object.The thermal conductivity is simulated by the equilibrium molecular dynamics method.Moreover,the physical mechanisms is revealed through analysis from multiple perspectives.The results show that,when the mass fraction of nanoparticles is 2%,4%and 6%,the thermal conductivity of the nanofluid is increased by 5.75%,6.47%and 0.05%respectively.The diffusion coefficient results show that the addition of nanoparticles does not enhance the microconvection in the base liquid.By analyzing the radial distribution function,it is found that the addition of nanoparticles leads to the increase of coordination number between Na atom and N atom in NO_(3)^(-),and the strengthening of the force between particles,which results in the increase of the thermal conductivity of the nanofluid.In addition,with the increase of temperature,the thermal conductivity of molten salt nanofluids decreases,the particle mass fraction/particle size increases and the thermal conductivity changes nonmonotonically.
作者 刘吉 胡槐生 杨双维 王少君 李丽君 LIU Ji;HU Huaisheng;YANG Shuangwei;WANG Shaojun;LI Lijun(China Energy Engineering Group Anhui Electric Power Design Institute Co.,Ltd.,Hefei 230601,China;National Engineering Laboratory of Biomass Power Generation Equipment,North China Electric Power University,Beijing 102206,China;Baqiao Thermal Power Plant of Datang Shaanxi Power Generation Co.,Ltd.,Xi′an 710065,China)
出处 《安徽电气工程职业技术学院学报》 2021年第3期58-67,共10页 Journal of Anhui Electrical Engineering Professional Technique College
基金 国家自然科学基金资助项目(项目编号:52006069) 中央高校基金项目(项目编号:2020MS020)。
关键词 分子动力学 熔融盐 纳米流体 热导率 molecular dynamics simulation molten salt nanofluids thermal conductivity
  • 相关文献

参考文献9

二级参考文献66

  • 1马源锴.太阳能光伏发电应用现状与发展前景[J].中文科技期刊数据库(文摘版)教育,2015(10):96-97. 被引量:1
  • 2杜春旭,王普,吴玉庭,马重芳.线性菲涅耳聚光镜场辐射量计算方法[J].化工学报,2011,62(S1):179-184. 被引量:9
  • 3左远志,丁静,杨晓西.蓄热技术在聚焦式太阳能热发电系统中的应用现状[J].化工进展,2006,25(9):995-1000. 被引量:33
  • 4罗智慧,龙新峰.槽式太阳能热发电技术研究现状与发展[J].电力设备,2006,7(11):29-32. 被引量:45
  • 5Herrmann U, Kearney D W. Survey of thermal energy storage for parabolic trough power plants[J], J. Sol. Energy Eng., 2002, 124 (2): 145-152.
  • 6Dunn R I, Hearps P J, Wright M N. Molten-salt power towers: Newly commercial concentrating solar storage[J]. Proceedings of the IEEE, 2012, 100 (2): 504-515.
  • 7Acem Z, Lopez J, Palomo E. KNO3/NaNO3 graphite materials for thermal energy storage at high temperature: Part I. Elaboration methods and thermal properties[J]. Appl. Therm. Eng., 2010, 30( 13): 1580-1585.
  • 8Shin D Y, Banerjee D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. Int. J. Heat Mass Transfer, 2011, 54 (5-6): 1064-1070.
  • 9James E P, Steven K S, Kolb W J, et al. Development of a molten-salt thermocline thermal storage system for parabolic through plants[J].J. Sol.EnergyEng., 2002, 124: 153-159.
  • 10Abedin A H, Rosen M A. A critical review of thermochemical energy storage systems[J]. The Open Renewable Energy Journal, 2011 (4): 42-46.

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部