期刊文献+

基于数据挖掘技术的SCR脱硝反应器入口NO_(x)软测量方法

Soft-Sensing Method for Inlet NO_(x) of SCR Denitration Reactor Based on Data Mining Technology
下载PDF
导出
摘要 针对选择性催化还原系统(SCR)严重的滞后性特点,以电厂实际运行数据为基础数据,分别采用灰色系统GM(1,N)模型和BP神经网络进行试验数据的挖掘,寻找试验过程的重要控制参数,并对其进行入口氮氧化物(NO_(x))预测分析。通过比较两个模型的预测结果可知,BP神经网络模型比灰色系统GM(1,N)模型具有更高的预测精度,更适合于SCR入口NO_(x)的预测。 In view of the serious nonlinearity,hysteresis and time variability of the selective catalytic reduction system(SCR),the gray system GM(1,N)model and the BP neural network are used to test the actual operating data of the power plant,looking for important control parameters of the test process and conducting the inlet nitrogen oxide(NO_(x))prediction analysis.By comparing the prediction results of the two models,it can be seen that the BP neural network model has higher prediction accuracy than the gray system GM(1,N)model and is more suitable for prediction of SCR inlet NO_(x).
作者 李达 LI Da(China Datang Corporation Science and Technology General Research Institute Co.LTD East China Electric Power Test&Research Institute,Hefei 230088,China)
出处 《安徽电气工程职业技术学院学报》 2021年第3期103-107,共5页 Journal of Anhui Electrical Engineering Professional Technique College
关键词 SCR 软测量 BP神经网络 灰色模型 预测分析 SCR soft sensor BP neural network gray model prediction analysis
  • 相关文献

参考文献5

二级参考文献23

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部