期刊文献+

基于梯度优化的多任务混合学习方法 被引量:2

An Approach of Mixed Multi-task Learning Based on Gradient Optimization
下载PDF
导出
摘要 多任务学习作为深度学习的一个分支,得到了广泛关注与深入研究,但仍然存在网络结构复杂、任务区分困难的问题。据此,基于硬参数共享神经网络给出梯度优化的多任务混合学习方法。首先,无需区分不同任务,将多任务训练数据一同送入网络进行混合训练,所有任务共用一个损失函数,前一次训练所得的网络共享层参数作为下次训练的共享层初始化参数;其次,根据不同共享层提取特征的差异和任务在深层梯度变化的不同,调节相应的激活值,优化网络参数,既保持了硬参数共享神经网络结构的简洁性特点,又利于解决多任务训练过程中数据的非平衡问题;最后,通过在UCI公开数据集中的鸢尾花和天平秤数据上的实际应用,以及与传统的硬参数共享神经网络的纵向对比,验证了该学习方法的可行性与有效性。 As a branch of deep learning,multi-task learning has received extensive attention and in-depth research.However,there are still some difficult problems such as overly complex network structure and indistinguishable multiple related tasks.An approach of mixed multi-task learning based on gradient optimization is proposed,that is established for the hard parameter sharing neural network.Firstly,the multi-task training data is fed into the network together for mixed training without distinguishing between different tasks,and all tasks share one loss function,during which the network sharing layer parameters obtained from the previous training are used as the initialization parameters of the sharing layer for the next training.Secondly,according to the difference of features extracted from different sharing layers and the different gradient changes of tasks in deep layers,the corresponding activation values are adjusted and the network parameters are optimized,which not only maintain the conciseness of the hard parameter sharing network structure,but also help to solve the non-equilibrium problem of data during the multi-task training.Finally,through the practical application of iris and balance data in the UCI open data set,as well as the longitudinal comparison with the traditional hard parameter sharing neural network,the feasibility and effectiveness of the proposed learning method is verified.
作者 郭辉 郭静纯 张甜 GUO Hui;GUO Jing-chun;ZHANG Tian(School of Information Engineering,Ningxia University,Yinchuan 750021,China)
出处 《计算机技术与发展》 2021年第10期7-12,共6页 Computer Technology and Development
基金 国家自然科学基金(62062056) 宁夏自然科学基金(2021AAC03117) 宁夏回族自治区“双一流”学科建设:计算机科学与技术(B类)(030900002009) 宁夏“大数据智能技术与应用科技创新团队”(030103060053)。
关键词 多任务学习 硬参数共享 特征提取 混合训练 梯度优化 multi-task learning hard parameter sharing feature extraction mixed training gradient optimization
  • 相关文献

参考文献3

二级参考文献4

共引文献153

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部