期刊文献+

基于组合向量的支持向量机算法预测酶的类型

Prediction of Enzyme Types by Support Vector Machine Algorithm Based on Combined Vectors
下载PDF
导出
摘要 酶的类型与其功能和催化性能关系密切,对于新发现的酶,可以通过确定它的类型来表明其生物功能。目前研究酶的生化实验方法不仅费时、耗资,而且可能会碰到许多无法解决的实际困难,因此使用机器学习算法来识别酶类型的理论方法显得十分重要。从酶的一级序列出发,给截取的氨基酸片段打分,将打分值和离散增量值构成的组合向量作为特征参数,运用支持向量机的算法预测酶的类型,取得了较好的预测结果,Jackknife检验的预测成功率为88.86%,表明此算法对于酶的分类预测非常有效。 The type of enzyme is closely related to its function and catalytic performance.For a newly discovered enzyme,its biological function can be indicated by determining its type.At present,the biochemical experimental methods for studying enzymes are not only time-consuming and costly,but also may encounter many practical difficulties that cannot be solved.Therefore,the theoretical method for using machine learning algorithm to identify enzyme types is very important.The amino acid sequences of enzymes are scored for specific amino acid segments.The combined vector composed of scoring value and discrete increment value is used as information parameter to predict the type of enzyme by using the algorithm of support vector machine.The prediction success rate of Jackknife test is 88.86%.The results show that this algorithm is very effective for prediction of enzymes.
作者 王婷 WANG Ting(Changzhi Vocational Technical Institute,Changzhi 046000,Shanxi Province,China)
出处 《天津科技》 2021年第10期35-37,共3页 Tianjin Science & Technology
关键词 矩阵打分 离散增量 支持向量机 enzyme matrix scoring discrete increment support vector machine
  • 相关文献

参考文献6

二级参考文献84

  • 1李凤敏,李前忠.蛋白质亚细胞定位的识别[J].生物物理学报,2004,20(4):297-306. 被引量:11
  • 2施建宇,潘泉,张绍武,梁彦.基于支持向量机融合网络的蛋白质折叠子识别研究[J].生物化学与生物物理进展,2006,33(2):155-162. 被引量:19
  • 3杨科利,李前忠,林昊.预测酵母(Yeast)基因转录因子结合位点[J].内蒙古大学学报(自然科学版),2006,37(5):524-530. 被引量:16
  • 4Fickett J, Wasserman W. Discovery and modeling of transcriptional regulatory regions [J].Curr. Opin.Biotechnol , 2000,11 (1) : 19 - 24.
  • 5Wingender E,Chen X, Hehl R, et al. TRANSFAC : an integrated system for gene expression regulation [J]. Nucleic Acids Research, 2000,28 ( 1 ) : 316 - 319.
  • 6Vlieghe D, Sandelin A, De Bleser P J,et al. A new generation of JASPAR, the open-access repository for transcription factor binding site profiles [J].Nucleic Acids Research, 2006,34:D95-D97.
  • 7Hu J, Li B, Kihara D. Limitations and potentials of current motif discovery algorithms [J].Nucleic Acids Research.2005,33(15) :4899-4913.
  • 8Zhou Q, Liu J, Modeling within-motif dependence for transcription factor binding site predictions[J]. Bioinformatics, 2004.20 (6): 909 - 916.
  • 9Stormo G D. DNA binding sites :representation and discovery[J]. Bioinformatics, 2000,16(1):16-23.
  • 10Berg O,von Hippel P. Selection of DNA binding sites by regulatory proteins statistical-mechanical theory and application to operators and promoters [J]. J. Mol. Biol,1987,193(4) :723-750.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部