期刊文献+

多视角半监督分类算法比较及研究进展 被引量:1

Comparison and research progress of multi-view semi-supervised classification algorithms
下载PDF
导出
摘要 随着科技的发展,数据的获取渠道变得越来越多,所获得的数据也越来越多样化,多视角数据在目前的应用也已经相当普遍.但是在处理真实世界的问题时,获得的多视角数据一般只带有少量标签,而人工标注的成本比较高昂,因此多视角半监督学习在机器学习和图像处理领域引起了许多学者的关注.本研究对近年来提出的多视角半监督分类方法进行归类,并对多视角半监督分类方法所面临的挑战进行讨论. With the development of science and technology,more and more channels are available for data acquisition,and the data obtained become more diversified.The current application of multi-view data has become quite common.However,when dealing with real-world problems,the multi-view data obtained often includes only a small number of labels,and the cost of manual labeling is relatively expensive,so multi-view semi-supervised learning has attracted the attention of many scholars in the field of machine learning and image processing.This article reviews and categorizes several multi-view semi-supervised classification methods published in recent years.Discuss the challenges faced by multi-view semi-supervised classification methods.
作者 郭文忠 姚杰 王石平 GUOWenzhong;YAO Jie;WANG Shiping(College of Computer and Data Science,Fuzhou University,Fuzhou,Fujian 350108,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2021年第5期626-637,共12页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2018J07005)。
关键词 多视角 半监督学习 机器学习 图像处理 比较研究 multi-view semi-supervised learning machine learning image processing comparative research
  • 相关文献

参考文献3

二级参考文献63

  • 1杨剑,王珏,钟宁.流形上的Laplacian半监督回归[J].计算机研究与发展,2007,44(7):1121-1127. 被引量:15
  • 2Chapelle O,Scholkopf B,Zien A. Semi-Supervised Learning[M].Cambridge,ma:the Mit Press,2006.
  • 3Zhu X J. Semi-supervised Learning Literature Survey.Technical Report 1530[R].Department of Computer Sciences,University of Wisconsin at Madison,Madison,WI,2006.
  • 4Zhou Z H,Li M. Semi-supervised learning by disagreement[J].Knowledge and Information Systems,2010,(03):415-439.
  • 5Shahshahani B M,Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J].IEEE Transactions on Geoscience and Remote Sensing,1994,(05):1087-1095.
  • 6Miller D,Uyar H. A mixture of experts classifier with learning based on both labelled and unlabelled data[A].Cambridge,ma:the Mit Press,1997.571-577.
  • 7Nigam K,McCallum A K,Thrun S,Mitchell T. Text classification from labeled and unlabeled documents using EM[J].Machine Learning,2000,(2-3):103-134.
  • 8Blum A,Mitchell T. Combining labeled and unlabeled data with co-training[A].New York,USA:ACM,1998.92-100.
  • 9Joachims T. Transductive inference for text classification using support vector machines[A].San Francisco,CA,USA,Morgan Kaufmann Publishers Inc,1999.200-209.
  • 10Zhu X J,Ghahramani Z,Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions[A].Menlo Park,ca:aaai Press,2003.912-919.

共引文献215

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部