摘要
研究不同喷射角度下强化研磨处理GCr15轴承钢板表面耐摩擦腐蚀性的影响。通过改变强化研磨喷射角度,在3.5%NaCl中进行摩擦磨损实验,测试其耐摩擦腐蚀性能。并对试样进行金相组织、SEM、显微硬度、质量磨损和表面磨痕分析。在不同喷射角度下的摩擦腐蚀试验下,磨损量分别为0.0925 g、0.0533 g、0.0247 g,低于未处理的试样(0.1311 g),其表面磨痕宽度分别为491.9μm、346.8μm、323.2μm,比未处理的试样低(545.9μm),但是其表面粗糙度分别为Ra0.545μm、Ra0.598μm、Ra0.618μm,比未处理的试样高(0.481μm)。当喷射角度由30°增加至90°时,其质量磨损量下降72%,表面磨痕宽度下降41%,表面粗糙度上升18%,强化层厚度增加55%,当喷射角度为90°时,试样的显微硬度最高(HV895.4)。由此得出结论:不同喷射角度下强化研磨加工处理GCr15轴承钢板后,材料表层虽然粗糙度有所提升,但是组织尺寸变小、硬度提高、出现组织均匀的致密强化层,在综合条件下材料的耐摩擦腐蚀性能得到提高。
To study the effect of strengthening grinding treatment on the friction corrosion resistance of GCr15 bearing steel plate under different injection angles.The friction and wear experiments were carried out in 3.5%NaCl by changing the jet angle of strengthening grinding to test its friction and corrosion resistance.The metallographic structure,SEM,microhardness,quality wear and surface wear marks of the samples were analyzed.In the friction corrosion test under different spray angles,the wear amount swere 0.0925 g,0.0533 g and 0.0247 g respectively,which were lower than those of untreated samples(0.1311 g),and the surface wear trace widths were 491.9μm,346.8μm,323.2μm respectively.Lower than untreated sample(545.9μm),however,its surface roughness is Ra0.545μm,Ra0.598μm,Ra0.618μm,higher than untreated sample(0.481μm).When the spray angle increases from 30°to 90°,the mass wear decreases by 72%,the surface wear mark width decreases by 41%,the surface roughness increases by 18%,and the thickness of the strengthening layer increases by 55%.When the spray angle is 90°,the microhardness of the sample is the highest(HV895.4).After strengthening grinding treatment of GCr15 bearing steel plate under different spray angles,although the roughness of the surface layer of the material is improved,the tissue size becomes smaller,the hardness is improved,and a dense strengthening layer with uniform tissue appears.Under the comprehensive conditions,the friction and corrosion resistance of the material is improved.
作者
刘晓初
吴子轩
梁忠伟
吴俊
范立维
耿晨
谢鑫成
黄伟锋
危珊
Liu Xiaochu;Wu Zixuan;Liang Zhongwei;Wu Jun;Fan Liwei;Geng Chen;Xie Xincheng;Huang Weifeng;Wei Shan(School of Mechanical&Electric Engineering,Guangzhou University,Guangzhou 510006,China;Guangzhou Key Laboratory for Strengthened Grinding and High Performance Machining of Metal Material,Guangzhou University,Guangzhou 510006,China;Guangdong Engineering and Technology Research Centre for Strengthen Grinding and High Performance Micro-nanomachining,Guangzhou University,Guangzhou 510006,China;School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处
《机电工程技术》
2021年第9期1-5,共5页
Mechanical & Electrical Engineering Technology
基金
国家自然科学基金项目(编号:52075109,51975136)
国家自然科学联合基金重点项目(编号:U1601204)
国家重点研发计划项目(编号:2018YFB2000501-02)。