期刊文献+

基于GSA-LSSVM的岩石爆破块度预测 被引量:1

Prediction of Rock Blasting Fragmentation Based on GSA-LSSVM
下载PDF
导出
摘要 为了提高露天矿山爆破开挖的作业效率、增加经济效益,精准地预测爆破块度分布至关重要。文章将万有引力搜索智能算法(GSA)与最小二乘支持向量机结合,形成GSA-LSSVM预测模型,首次将该预测模型应用到爆破块度的预测当中。结合现有有关的矿山爆破块度数据,并依次运用GSA-LSSVM、LS-SVM、Kuz-Ram三种块度模型进行数据预测、分析。根据预测结果分析可知:在三种不同的爆破块度预测模型中,精度最高的为GSA-LSSVM模型,佐证了将该模型运用于预测露天矿山爆破块度的可行性及预测精度的优势。 During blasting and excavation of open pit mines,it is importance to predict the blasting fragmentation accurately and reasonably for improving the working efficiency and economic benefit.In this paper,GSA-LSSVM prediction model is formed by combining GSA with LS-SVM.Based on the existing statistical data of mine blasting fragmentation,three models,GSA-LSSVM,LS-SVM and Kuz-Ram,were respectively used to make predictions.The research results show that GSA-LSSVM model has the highest prediction accuracy,which proves that the model has advantages in predicting blasting fragmentation in open pit mines.
作者 王军 崔志鹏 WANG Jun;CUI Zhi-peng(Jiangsu Nanjing Geo-Engineering Surveyiec Institute,Nanjing 210041,China)
出处 《湖南有色金属》 2021年第5期1-4,共4页 Hunan Nonferrous Metals
关键词 最小二乘向量机 万有引力搜索算法 岩石块度预测 least squares support vector machine gravitational search algorithm rock fragmentation prediction
  • 相关文献

参考文献7

二级参考文献61

  • 1汪学清,单仁亮.人工神经网络在爆破块度预测中的应用研究[J].岩土力学,2008,29(S01):529-532. 被引量:9
  • 2杨成祥,冯夏庭.支持向量回归在岩土工程中的应用[J].东北大学学报(自然科学版),2006,27(5):563-566. 被引量:4
  • 3郭连军,王智静,牛成俊,任保山,赵维清,朱勇,许丹华.爆破优化的神经网络模型[J].工程爆破,1996,2(2):11-15. 被引量:20
  • 4周传波.[D].沈阳:东北大学,1995.
  • 5JIMENO C L,JIMENO E L,CARCEDO F J A. Drilling and blasting of rocks [M]. Rotterdam: Taylor & Francis US,1995.
  • 6HAMDI E, DU MOUZA J, FLEURISSON J A. Evaluation of the part of blasting energy used for rock mass fragmentation [J]. Fragblast: The International Journal for Blasting and Fragmentation, 2001,5(3): 180-193.
  • 7ALER J, DU MOUZA J, ARNOULD M. Measurement of the fragmentation efficiency of rock mass blasting and its miningapplications [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(2): 125-139.
  • 8MONJEZI M,AMIRI H,FARROKHI A,GOSHTASBI K. Prediction of rock fragmentation due to blasting in Sarcheshmeh copper mine using artificial neural networks [J]. Geotechnical and Geological Engineering,2010,28: 423-430.
  • 9KULATILAKE P H S W,WU Q,HUDAVERDI T,KUZU C. Mean particle size prediction in rock blast fragmentation using neural networks [J]. Engineering Geology,2010,114(3-4): 298-311.
  • 10KUZNETSOV V M. The mean diameter of the fragments formed by blasting rock [J]. Soviet Mining Science,1973,9(2): 144-148.

共引文献119

同被引文献16

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部