期刊文献+

一种基于ICA的离散对数求解方法

A method for computing discrete logarithm based on ICA
原文传递
导出
摘要 ICA(index calculus algorithm)是一种计算离散对数的概率型算法,存在盲目性和计算效率不高的问题,为此,利用取整函数的一些性质和同余运算的特点,提出一种基于ICA的改进算法,即IICA(improved index calculus algorithm)。IICA将所求对数中未知的素因子逐个变换到分解基中的元素,然后计算离散对数。实例验证表明,该算法是可行和有效的,与已有算法相比,具有明显的优越性。 The index calculus algorithm(ICA) is a probabilistic algorithm of computing discrete logarithms. The ICA is blind on solving discrete logarithms, and is not high for computation efficiency. Therefore, by using some properties of integral function and the characteristics of congruence arithmetic, an improved algorithm based on ICA is put forward. The improved index calculus algorithm(IICA)transforms the unknown element factors of the logarithm to the elements in the decomposition base one by one. Finally, the IICA computes discrete logarithm. Example shows that the IICA is feasible and effective. Compared with the existing algorithm, the IICA has the obvious superiority.
作者 胡建军 HU Jianjun(School of Digital Media,Lanzhou University of Arts and Science,Lanzhou 730010,China)
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2021年第9期874-878,共5页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:61070162、71071028) 甘肃省高等学校科学研究项目(编号:2015B-136) 兰州文理学院服务地方经济社会发展计划项目(编号:2021FWDF15)。
关键词 离散对数 分解基 取整函数 因子分解 乘法群 discrete logarithm decomposition base integral function factorization multiplicative group
  • 相关文献

参考文献7

二级参考文献40

  • 1刘新汉,谢晓尧.一种基于素域的安全椭圆曲线选取算法[J].机械与电子,2010,28(S1):134-136. 被引量:1
  • 2SHANKS D. Class number, a theory of factorization, and genera[J]. Pure Math, 1971,20:415-440.
  • 3TERR D C. A modification of Shanks' baby-step giant-step algorithm[J]. Math Comp, 2000,69(230):767-773.
  • 4STEIN A, TESKE E. Optimized baby-step giant step methods[ J ]. J Ramanujan Math Soc, 2005,20 (1) :1-32.
  • 5SUTHERLAND A V. Order computations in generic groups[ D]. M. I. T. :PhD thesis, 2007.
  • 6POLLARD J M. Monte Carlo methods for index computation (mod p)[J]. Math Comp, 1978,32 (143) :918-924.
  • 7POLLARD J M. Kangaroos, monopoly and discrete logarithms [ J ]. J Crypto, 2000,13 (4) :437-447.
  • 8POHLIG S C, HELLMAN M E. An improved algorithm for computing logarithms over GF(p) and its cryptographic significance [ J ]. IEEE Inf Theor Soc, 1978,24 ( 1 ) : 106-110.
  • 9THIONG J A. A serial version of the Pohlig-Hellman algorithm for computing discrete logarithms[ J]. Appl Algebria Eng Comm Comput, 1993,4( 1 ) :77-80.
  • 10ADLEMAN L. A subexponential algorithm for the discrete logarithm problem with applications to cryptography[ C ]//20th An- nual IEEE Symposium on FOCS, Puerto Rico, USA, 1979:55-60.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部