期刊文献+

改进的萤火虫算法及其在函数优化中的应用 被引量:2

Improved Firefly Algorithm and Its Application in Function Optimization
下载PDF
导出
摘要 萤火虫算法是一种简单、高效的启发式搜索方法,能够广泛应用到各类优化问题中,针对传统的萤火虫算法容易陷入局部最优,演化后期收敛速度偏慢等问题,提出了改进的Logistic映射策略和定时逆向学习算子相结合的初始化种群方法,其目的是改进种群的多样性、加快算法的收敛速度、避免算法过早的陷于局部最优.通过对6个标准测试函数进行测试验证,改进的算法在最优解的质量与稳定性优于其他被比较算法. Firefly algorithm is a simple and efficient heuristic search method,which can be widely applied to various optimization problems.In view of the problems that the traditional firefly algorithm is easy to fall into local optimum and convergence rate is slow in the late evolution period,an initialization population method based on improved Logistic mapping strategy and timed reverse learning operator is proposed,with an aim to improve the diversity of the population,speed up the convergence of the algorithm,and avoid the prematurely falling into local optimum.By testing and verifying 6 standard test functions,it is found that the quality and stability of the improved algorithm are better than those of other compared algorithms in optimal solution.
作者 鄢靖丰 张钦程 刘松杰 YAN Jingfeng;ZHANG Qincheng;LIU Songjie(College of Information Technology,Xuchang University,Xuchang 461000,China;Department of Computer Science,University of New South Wales,Sydney 2052,Australia)
出处 《许昌学院学报》 CAS 2021年第5期102-106,共5页 Journal of Xuchang University
基金 许昌学院科研项目(2018YB002) 许昌学院青年骨干教师资助计划。
关键词 萤火虫算法 函数优化 混沌映射 firefly algorithm function optimization chaotic mapping
  • 相关文献

参考文献7

二级参考文献78

  • 1刘云忠,宣慧玉.车辆路径问题的模型及算法研究综述[J].管理工程学报,2005,19(1):124-130. 被引量:83
  • 2KRISHNANAND K N, GHOSE D. Glowworm swarm optimization: a new method for optimizing multi-modal functions[J]. Computational Intelligence Studios ,2009,1 ( 1 ) :93-119.
  • 3KRISHNANAND K N. Glowworm swarm optimization: a multimodal function optimization paradigna with applications to multiple signal source localization tasks [ D]. Indian: Indian Institute of Science, 2007.
  • 4KRISHNANAND K N, GHOSE D. A glowworm swarm optimization based multi-robot system for signal source localization[ M ]//LIU Di- kai, WANG Ling-feng, TAN K C. Design and Control of Intelligent Robotic Systems. [ S. l. ] : Springer,2009:53-74.
  • 5KRISHNANAND K N, GHOSE D. Chasing multiple mobile signal sources : a glowworm swarm optimization approach [ C ]//Proc of the 3rd Indian International Conference on Artificial Intelligence. 2007.
  • 6DEEP K, BANSAL J C; Mean particle swarm optimization for func- tion optimization [ J ]. Computational Intelligence Studies, 2009,1 (1) :72-91.
  • 7KRISHNANAND K N, GHOSE D. Theoretical foundations for ren- dezvous of glowworm-inspired agent swarms at multiple locations [ J ]. Robotics and Autonomous Systems,2008,56(7) : 549-569.
  • 8Peng J M, Xia Y.A new theoretical framework for K-means clustering[C]//Chu Wesley, Lin TsauYoung.Foundation and Recent Advances in Data Mining.Berlin: Springer-Verlag, 2005:79-96.
  • 9Fei Wang,Dexian Zhang,Na Bao.Fuzzy document clus- tering based on ant colony algorithm[C]//Proceedings of the 6th International Symposium on Neural Networks: Advances in Neural Networks-Part II, 2009 : 709-716.
  • 10Runkler T A.Ant colony optimization of clustering moels[J]. International Journal of Intelligent Systems,2005,20(12) : 1233-t261.

共引文献68

同被引文献29

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部