摘要
该文研究了具有一般初值的一维非等熵可压缩粘性微极流体模型,得到了该模型的低马赫数极限.该极限依赖于对加权时间导数的一致估计和一个广义的收敛引理.此外,在这种情况下,±∞处的状态之间的差异可能是任意大的.
In this paper,we consider the one dimensional non-isentropic compressible micropolar fluid model with general initial data,and justify rigorously the low Mach number limit of this system.The limit relies on the uniform estimates including weighted time derivatives and an extended convergence lemma.Moreover,the difference between the states at ±∞ can be arbitrary large in this case.
作者
刘欣
董小磊
Liu Xin;Dong Xiaolei(School of Statistics and Information,Shanghai University of International Business and Economics,Shanghai 201620;College of Information Sciences and Technology,Donghua University,Shanghai 201620)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2021年第5期1445-1464,共20页
Acta Mathematica Scientia
基金
国家自然科学基金(11801357)。
关键词
微极流体模型
非等熵
低马赫数极限
一致估计
Micropolar fluid model
Non-isentropic
Low Mach number limit
Uniform estimates