摘要
当前基于神经网络的入侵检测方法并没有将数据分类信息考虑在内,无法有效利用网络流量数据的时序信息,为此将门控循环单元(gated recurrent unit,GRU)和基于分类信息的特征嵌入技术结合起来,构建了基于GRU与特征嵌入的网络入侵检测模型。利用UNSW-NB15数据集进行模型仿真实验,结果表明该模型提高了对入侵攻击的检测率,为入侵检测中大规模数据的处理提供了一种全新的思路。
The existing intrusion detection methods based on neural network have not taken data classification information into consideration yet,thus,the timing information of network traffic data are not used effectively.In this paper,we propose network intrusion detection models based on gated recurrent unit(GRU)in combination with embedding technique of categorical information.Simulation experiments on the models are carried out with UNSW-NB15,which is a comprehensive network traffic dataset.Experimental results show that the proposed models not only improve the detection rate of intrusion attacks,but also provide a new way for intrusion detection in case of processing large-scale data.
作者
颜亮
姬少培
刘栋
谢建武
YAN Liang;JI Shaopei;LIU Dong;XIE Jianwu(No.30 Research Institute,China Electronics Technology Corporation,Chengdu 610041,Sichuan,China)
出处
《应用科学学报》
CAS
CSCD
北大核心
2021年第4期559-568,共10页
Journal of Applied Sciences
基金
四川省重大科技项目基金(No.2017GZDZX0002)资助。
关键词
网络入侵检测
机器学习
门循环单元
特征嵌入
network intrusion detection
machine learning
gate recurrent unit(GRU)
feature embedding