期刊文献+

基于三维卷积和CLSTM神经网络的水产养殖溶解氧预测 被引量:2

Prediction of Dissolved Oxygen in Aquaculture Based on 3D Convolution and CLSTM Neural Network
下载PDF
导出
摘要 提出了一种基于三维卷积和卷积长短期记忆(convolutional long short-term memory,CLSTM)神经网络的水产养殖溶解氧预测模型。首先,将输入向量及其转置相乘形成一个单通道矩阵,把一定时间段内的单通道矩阵堆叠成一个立方体作为输入数据;然后,将输入数据进行连续两次三维卷积来细化溶解氧相关因素的特征,并删除池化层以简化计算;最后,将三维卷积抽取的特征结果输入CLSTM模型以提取时间维度的信息,在全连接层根据梯度下降算法将数据反向更新。采集湖北省襄阳市某家特种水产养殖有限公司的实际数据进行实验。结果表明:相比于传统BP神经网络模型、Conv3D、Conv2D,所提出的模型具有更快的训练收敛速度、更高的预测精度和更好的预测稳定性,可以满足实际生产的需要。 In this paper,a neural network based on three-dimensional(3D)convolution and convolutional long short-term memory(CLSTM)is proposed to predict the dissolved oxygen in aquaculture.Firstly,an input vector is multiplied by its transpose to form a single-channel matrix,and the single-channel matrices within a certain period of time are stacked to form a cube as the input data.Secondly,two consecutive three-dimensional convolutions are carried out on the input data to refine the characteristics of dissolved oxygen related factors,and the pooling layer is deleted for reducing calculation.Finally,the feature results of 3D convolution extraction are sent to the CLSTM model for further information extraction of time dimension,and the data is updated reversely by the gradient descent algorithm through the full connection layer.The actual data of a special aquaculture company in Xiangyang,Hubei Province were collected for experiment,and experimental results show that the proposed model has faster training convergence speed,higher prediction accuracy and better prediction stability than traditional BP neural network models,Conv3D and Conv2D,and could meet the needs of actual production.
作者 查玉坤 张其林 赵永标 杭波 ZHA Yukun;ZHANG Qilin;ZHAO Yongbiao;HANG Bo(School of Computer Engineering,Hubei University of Arts and Science,Xiangyang 441053,Hubei,China)
出处 《应用科学学报》 CAS CSCD 北大核心 2021年第4期615-626,共12页 Journal of Applied Sciences
基金 中央引导地方科技发展专项资金(No.2019ZYYD043) 湖北省对外科技合作项目基金(No.2019AHB059) 襄阳市科技开发项目基金(No.2017AAA016) 湖北省创新项目基金(No.S201910519028)资助。
关键词 三维卷积神经网络 卷积长短期记忆 水产养殖 溶解氧 three-dimensional convolutional neural network convolutional long short-term memory(CLSTM) aquaculture dissolved oxygen
  • 相关文献

参考文献2

二级参考文献9

共引文献17

同被引文献29

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部