期刊文献+

磁流体动力学动量轮的致动特性和影响因素

Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel
下载PDF
导出
摘要 结合不可压缩流体的纳维−斯托克斯方程和磁流体动力学基本方程,针对电流和电压控制模式下矩形截面环管内金属流体的哈脱曼流动问题建立完整的传递函数模型,深入分析流体中黏滞力项和边界层效应对动量轮输出性能的影响.通过有限元仿真软件COMSOL对流体运动特性和流场分布进行仿真验证,分析电流、磁场和流体特征参数对动量轮输出指标的影响.在电流控制模式下,动量轮的角动量输出标度因数约为9.68×10^(−5)N·m·s/A,可作为动量轮的设计与优化依据. Based on Navier-Stokes equations for incompressible fluids and magnetohydrodynamics(MHD)basic equations,a complete transfer function model for Hartmann flow of metallic fluid in a rectangular annular tube under current and voltage control mode were built up,and the effects of viscous force and boundary layer on the output performance of the momentum wheel were analyzed.By using the finite element simulation software COMSOL,the fluid motion characteristics and velocity distribution were simulated and verified.The influencing factors of output indexs,including current,magnetic field and characteristic parameters of the fluid,were totally analyzed.In current control mode,the angular momentum output scale factor of the momentum wheel is about 9.68×10^(-5) N·m·s/A,which can provide the basis for the design and optimization of the momentum wheel.
作者 李吉冬 钟莹 李醒飞 LI Ji-dong;ZHONG Ying;LI Xing-fei(State Key Laboratory of Precision Measuring Technology and Instruments,Tianjin University,Tianjin 300072,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第9期1676-1683,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金重点项目(61733012) 国家自然科学基金国家重大科研仪器研制项目(61427810).
关键词 磁流体动力学(MHD) 动量轮 哈脱曼流动 有限元仿真 纳维−斯托克斯方程 magnetohydrodynamic(MHD) momentum wheel Hartmann flow finite element simulation Navier-Stokes equation
  • 相关文献

参考文献2

二级参考文献18

  • 1Bayat F, Bolandi H, Jalali A A. A heuristic design method for attitude stabilization of magnetic actuated satellite[J]. ActaAstronautic, 2009, 65(11): 1813-1825.
  • 2Chen M, Zhang S J, Liu F R. Combined attitude control of small satellite using one flywheel and magnetic torquers[C]// The 2nd International Symposium and Control in Aerospace and Astronautic. Shenzhen, China, ISSCAA, 2008: 1-6.
  • 3Huang W D, Zhang Y L. Rate damping control for small satellite using thruster[J]. Acta Astronautica, 2004, 55(1): 9-13.
  • 4Valdes A, Khorasani K. Dynamic neural network-based pulsed plasma thruster (PPT) fault detection and isolationfor the attitude control system of a satellite[C]// IEEE International Joint Conference on Neural Networks. Hong Kong, China, 2008: 2689-2695.
  • 5Haddi A, Alami N. Stabilization and observation of a satellite by Lyapunov's approach[J]. WSEAS Transaction on Circuits and Systems, 2006, 5(7): 1089-1096.
  • 6Radice C~ Casasco M. On different parameterization methods to analyze spacecraft attitude manoeuvres in the presence of attitude constrains[J] Aeronautical Joumal, 2007, 111(1119): 335-342.
  • 7Patel T R, Kumar K D, Behdinan K. Variable structure control for satellite attitude stabilization in elliptic orbits using solar radiation pressure[J]. Acta Astronautica, 2008, 64(2): 359-373.
  • 8Son J W, Lim J T. Stabilization of approximately feedback linearizable systems using singular perturbation[J]. IEEE Transactions on Automatic Control, 2008, 53(6): 1499-1053.
  • 9Fang B, Kelka A G~ On feedback linearization of underactuated nonlinear spacecraft dynamics[C]// Proceeding of 40tb IEEE Conference on Decision and Control. Orlando, Florida, USA, 2001: 3400-3405.
  • 10Bang H, Myung H S, Tahk M J. Nonlinear Momentum Transfer Control of Spacecraft by Feedback Linearization [C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Monterey, California. 2002: 2002-4571.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部