期刊文献+

基于图数据深度挖掘的旋转机械故障诊断 被引量:7

Fault diagnosis of rotating machinery based on graph data deep mining
原文传递
导出
摘要 针对旋转机械故障诊断过程面临的小样本问题,提出了一种基于图数据深度挖掘的旋转机械故障诊断方法.首先,将利用归一化处理后的监测信号重塑为汉克尔矩阵;然后,将奇异值分解得到的特征向量作为图数据的节点表示,进一步地运用边连接方式构建基于奇异值特征向量的图数据;在此基础上,利用构建的图卷积神经网络充分提取图数据中的高层次故障特征敏感信息;最后,利用softmax分类器辨识监测信号故障类别.实验结果表明:该方法能够以30%的小样本训练集实现99.28%的准确率,具备了良好的故障识别能力. Aiming at the problem of small samples in the fault diagnosis of rotating machinery,a fault diagnosis method based on graph data deep mining was proposed.Firstly,the normalized monitoring signals were remolded into Hankel matrix.Then,the eigenvectors obtained by singular value decomposition were represented as nodes of the graph data.Furthermore,the edge connection method was used to construct the graph based on singular value eigenvectors.On this basis,the constructed graph convolutional neural network was used to fully extract the high-level fault feature sensitive information from the graph data.Finally,softmax classifier was used to identify the fault category of monitoring signals.The experimental results show that the method can achieve 99.28%accuracy with 30%small sample training set and has good fault recognition ability.
作者 刘颉 杨超颖 周凯波 LIU Jie;YANG Chaoying;ZHOU Kaibo(School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第9期1-5,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家重点研发计划资助项目(2020YFB1711203)。
关键词 旋转机械 故障诊断 奇异值分解 图数据构建 图卷积神经网络 rotating machinery fault diagnosis singular values decomposition graph data construction graph convolutional neural network
  • 相关文献

参考文献4

二级参考文献16

共引文献37

同被引文献56

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部