期刊文献+

直流电机电刷磨损预测的粒子滤波方法 被引量:2

A Particle Filter Method for Brush Wear Prediction of Direct Current Motor
下载PDF
导出
摘要 针对直流电机电刷磨损的跟踪与预测问题,提出了一种改进型粒子滤波器的电机电刷磨损状态演变预测方法。首先建立直流电机的动态模型,通过电刷磨损仿真分析获得一定时间间隔的电流输出数据,此输出数据作为测量数据用作为预测模型的输入。接着,根据测量数据的变化规律建立电机电刷磨损预测的模型形式,然后通过采用所提出的多项式重采样粒子滤波方法来预测电机电刷磨损状态的演变。案例数据分析结果表明,所提出的基于粒子滤波的电刷磨损预测方法是有效的且计算过程简便。 Aiming at the issue of brush wear tracking and prediction of DC motors, a revised particle filter method was proposed for predicting the evolvement of brush wear condition of DC motor. Firstly, a dynamic model of DC motor was built by considering the influence of motor’s commutation. The current output data with some time length were obtained by brush wear simulation. These current data were considered to be measuring data and used to be input of the designed predicting model. Secondly, the model version for brush wear prediction was established according to the changing trend of the measuring data. Eventually, brush wear prediction was performed by the particle filter with multinomial resample based on the measuring data. The analysis results of case data show that the proposed brush wear prediction method based on particle filter is effective and its calculation process is straightforward.
作者 王鹏 张作君 WANG Peng;ZHANG ZuoJun(The 39th Research Institute of China Electronics Technology Group Corporation,Xi’an 710065,China;Key Laboratory of Antenna and Control Technology of Shaanxi Province,Xi’an 710065,China;Jiamusi Meteorological Satellite Earth Station,Jimusi Heilongjiang 154000,China)
出处 《微电机》 2021年第8期43-46,97,共5页 Micromotors
基金 国防科工“十三五”技术基础项目(JSZL20172108103)。
关键词 永磁直流电机 粒子滤波器 多项式重采样 电刷磨损预测 permanent magnet DC motors particle filter multinomial resample brush wear prediction
  • 相关文献

参考文献2

二级参考文献26

  • 1唐芳轩,傅煜.隐极同步发电机转子匝间短路的分布电压诊断法[J].高压电器,2005,41(1):72-73. 被引量:15
  • 2Penman J, Jiang H. The deetection of stator and rotor wind- ing short circuits in synchronous generators by analyzing exci- tation current harmonies[C]//Opportunities and advances in international power generation conference publication No.419 IEE.[S.1.] :IEE press, 1996 : 137-142.
  • 3Maragos P,Schafer R W.Morphologieal filters part h their set theoretic analysis and relations to linear shift invariant filters [J]. IEEE trans on acoustics speechand signal processing, 1987,35(8) : 1153-1169.
  • 4Brits R. Locating multiple optima using particle swarm optimiza- tion[J]. Applied mathematics and computation, 2007,189 ( 2 ) : 1859-1883.
  • 5Shi Y, Eberhart R. Modified particle swarms optimizer[C]// The 1998 IEEE international conference on evolutionary com- putation proceedings. Anchorage, Alas, USA: IEEE world congress on computational intelligence, 1998 ; 69-73.
  • 6Kruzic J J. Predicting fatigue failm'es [ J ]. Science, 2009, 325 (5937) : 156 - 158.
  • 7Bagul Y G, Zeid I, Kamarthi S V. Overview of remaining useful life methodologies [ C ]//Proceedings of the ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, New York, 2008 : 1391 - 1400.
  • 8Shao Y, Nezu K. Prognosis of remaining bearing life using neural networks [ J ]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2000, 214 ( 3 ) : 217 - 230.
  • 9Wang T Y, Yu J B, Lee J,et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems [ C]//Proceedings of the International Conference on Prognostics and Health Management , IEEE, 2008 : 1 - 6.
  • 10Dong M, He D. A segmental hidden semi-Markov model-based diagnostics and prognostics framework and methodology [ J ]. Mechanical Systems and Signal Processing, 2007, 21 ( 5 ) : 2248 - 2266.

共引文献4

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部