期刊文献+

聚酰胺复合正渗透膜扩散过程分子动力学模拟 被引量:2

Molecular dynamics simulation of diffusion process of polyamide composite forward osmosis membrane
下载PDF
导出
摘要 水通量较低的问题限制了正渗透技术的大规模应用,在聚酰胺复合正渗透膜的支撑层和活性层中引入纳米材料是正渗透膜水通量提升的重要方式.采用Materials Studio(MS)软件对H_(2)O分子、Na^(+)和Cl^(-)等在正渗透膜活性层和支撑层内的扩散过程进行模拟,研究了纳米材料的添加对水分子和离子渗透的影响.结果表明,相较于支撑层,活性层具有较小的水分子和离子扩散系数及自由体积;活性层较低的自由体积结构是限制正渗透膜水通量的主要因素.在活性层中添加纳米材料可增加活性层聚合物的自由体积,相较于在支撑层中的添加,可更有效地提高正渗透膜的水通量. The low water permeability of polyamide composite forward osmosis membrane limits its larger-scale applications.The introduction of nano-materials in both active layer and support layer is an important way to mitigate this issue.In this work,the Materials Studio(MS)software was applied to simulate the diffusion process of water molecules and salt ions in polyamide composite forward osmosis membrane.The results indicated that the diffusion coefficients and free volume of the active layer were smaller than those of the polysulfone support layer.The structure of the active layer with lower free volume was the main factor limited the forward osmosis membrane water permeability.Therefore,the forward osmosis membrane water permeability can be improved by adding nano-materials into the active layer increasing the active layer molecules free volume.
作者 聂雨奇 谢朝新 王毅 姚之侃 黄政宇 郭豪 肖舒宁 NIE Yuqi;XIE Chaoxin;WANG Yi;YAO Zhikan;HUANG Zhengyu;GUO Hao;XIAO Shuning(Army Logistic University of PLA,Chongqing 401331,China;State Key Lab of NBC Protection for Civilian,Beijing 102205,China;Zhejiang University,College of Chemical and Biological Engineering,Hangzhou 310027,China;Shang Hai University of Technology,College of Materials and Chemistry,Shanghai 200093,China)
出处 《膜科学与技术》 CAS CSCD 北大核心 2021年第5期60-64,72,共6页 Membrane Science and Technology
基金 重庆市重大科技攻关项目(cstc2012gg-sfgc00002) 2013年重庆高校创新团队建设计划资助项目(KJTD201340)。
关键词 正渗透膜 分子模拟 自由体积 forward osmosis membrane molecular simulation free volume
  • 相关文献

参考文献4

二级参考文献66

  • 1Warczok J, Ferrando M, Lopez F, et al. Reconcentration of spent solutions from osmotic dehydration using direct osmosis in two configurations[J]. Journal of Food Engineering, 2007, 80 ( 1 ) :317-326.
  • 2Benko K, Pellegrino J, Mason L W, et al. Measurement of water permeation kinetics across reverse osmosis and nanofiltration membranes: Apparatus development[J]. Journal of Membrane Science, 2006, 270 (1-2) : 187-195.
  • 3McCutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes[J]. Journal of Membrane Science, 2008, 318 (1-2) : 458-466.
  • 4Wang K Y, Chung T, Qin J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process[J]. Journal of Membrane Science, 2007, 300 (1-2): 6-12.
  • 5Wang K Y, Yang Q, Chung T, et al. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall[J]. Chemical Engineering Science, 2009, 64 (7) : 1577-1584.
  • 6Verissimo, Peinemann K V, Bordado J. Thin-film composite hollow fiber membranes: An optimized manufacturing method[J]. Journal of Membrane Science, 2005, 264 (1-2): 48-55.
  • 7Gerstandt K, Peinemann K V, Skilhagen S E, et al. Membrane processes in energy supply for an osmotic power plant[J]. Desalination, 2008,224 (1-3) : 64-70.
  • 8Jack H. Asymmetric forward osmosis membranes: WO, 2006110497 [P]. 2006-10-19.
  • 9Cohen D. Mixing moves osmosis technology forward[EB/OL]. 2004. http: //www.chemicalprocessing.com/articles/2004/346.html.
  • 10Mccutcheon J R, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. Journal of Membrane Science, 2006, 284 (1-2) .- 237-247.

共引文献61

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部