期刊文献+

基于leg-by-leg机动的两级采样被动跟踪方法 被引量:2

Passive Tracking Method with Two-hierarchy Sampling Based on Leg-by-leg Maneuver
下载PDF
导出
摘要 针对被动声呐方位-频率观测情况下粒子滤波检测前跟踪算法中高维采样效率低的问题,该文提出一种利用leg-by-leg机动可观测性特点的两级采样方法。首先,对leg-by-leg机动的可观测性进行分析;然后,建立极坐标系下的目标运动状态模型,以粒子相对观测站的距离和法向速度均匀分布为准则,提出将极坐标系下的目标状态向量映射至直角坐标系的方法;最后,为改善滤波收敛性,提出根据粒子的空间分布特征自适应地调整过程噪声协方差矩阵。仿真结果表明,对于典型的水下目标跟踪场景,所提方法可使滤波收敛率增大约47.6%,距离估计误差减小约329 m,滤波收敛时间缩短约450 s。 According to the low sampling efficiency of particle filter track before detecting in high dimension state space with bearing-frequency measurements of passive sonar,a two-hierarchy sampling method based on the observability of leg-by-leg maneuver is proposed.Firstly,the observability of leg-by-leg maneuver is analyzed.Secondly,the target motion model in polar coordinate system is build.Based on the uniform distribution of the distance and normal velocity of particles relative to the observation station,the method of mapping the target state vector in polar coordinate system to rectangular coordinate system is proposed.Finally,in order to improve the convergence of the filter,the covariance matrix of process noise is adaptively adjusted according to the spatial distribution of particle.Simulation results show that,compared with the traditional method,the proposed method can increase the filter convergence rate by about 47.6%,reduce the distance estimation error by about 329 m and reduce the convergence time by about 450 s.
作者 奚畅 蔡志明 袁骏 XI Chang;CAI Zhiming;YUAN Jun(College of Electronics Engineering,Naval University of Engineering,Wuhan 430000,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2021年第10期2805-2814,共10页 Journal of Electronics & Information Technology
关键词 检测前跟踪 粒子滤波 方位-频率观测 leg-by-leg机动 两级采样 Track before detect Particle filter Bearing-frequency measurements Leg-by-leg maneuver Two-hierarchy sampling
  • 相关文献

参考文献2

二级参考文献37

  • 1杨小军,潘泉,张洪才.基于粒子滤波和似然比的联合检测与跟踪[J].控制与决策,2005,20(7):837-840. 被引量:14
  • 2胡洪涛,敬忠良,胡士强.基于辅助粒子滤波的红外小目标检测前跟踪算法[J].控制与决策,2005,20(11):1208-1211. 被引量:25
  • 3Straka O, Simandl M, Dunik J. Gaussian mixtures proposal density in particle filter for track before detect[C]// Proc. of the 12th International Conference on Information Fusion, 2009:270 - 277.
  • 4Li C Y, Ji H B. Marginalized particle filter based track-before- detect algorithm for small dim infrared target[C]// Proc. of the International Conference on Artificial Intelligence and Computational Intelligence ,2009:321 - 325.
  • 5Gong Y X, Yang H W, Hu W D, et al. An efficient particle filter based distributed track before detect algorithm for weak targets[C]// Proc. of the lET International Radar Confer- ence ,2009:1 - 6.
  • 6Su H T, Wu T P, Liu H W, et al. Rao-Blackwellised particle filter based track before detect algorithm[J]. IET Signal Pro- cessing ,2008,2(2): 169 - 176.
  • 7Wu Z, Su T. Radar target detect using particle filter[C]// Proc. of the IEEE International Radar Conference ,2010:955- 958.
  • 8Fan L, Zhang X L. A modified track before detect algorithm for radar weak target[C]// Proc. of the 2nd International Conference on Signal Processing Systems, 2010 : 260 - 264.
  • 9Ji Q B, Yang Y. The arithmetic of tracking before detecting of dim infrared targets based on particle filter[C]// Proc. of the 2nd Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, 2010 : 229 - 234.
  • 10Blaekman S S, Popoli R. Design and analysis of modern track- ing systems[M]. Norwood: Artech House, 1999:1119 -117.

共引文献11

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部