期刊文献+

融入用户长短期兴趣的推荐算法多样性优化 被引量:1

Diversity optimization of recommendation algorithm integrating user's long-short-term interest
下载PDF
导出
摘要 多数传统的推荐算法在追求准确度时,忽略了多样性也是衡量推荐效果不可或缺的指标之一。而一味地提升多样性又势必会造成准确度的极大损失。由此提出依据用户兴趣度和兴趣变化度,在计算出用户兴趣值的基础上,分析不同用户的兴趣偏好情况。再将用户的长期与短期兴趣相结合进行推荐,保障个性化的同时确定用户的多样化程度,生成最终的推荐列表,很好地平衡了推荐结果的准确度与和多样性。 In the pursuit of accuracy,most traditional recommendation algorithms ignore diversity,which is also one of the indispensable indicators to measure the recommendation effect.However,increasing diversity desperately is bound to result in a great loss of accuracy.Presented on considering user interest and interest changes,on the basis of calculating user interest value,analyze the different user interest preference.Then combining the user's long-term and short-term interest to recommend,guaranteeing the diversification of personalized determine a user at the same time,produce the final recommendation list,reached a good balance between accuracy and diversity of recommendations.
作者 夏瑞玲 李国平 王国中 Xia Ruiling;Li Guoping;Wang Guozhong(College of Electrical and Electronic Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Key Laboratory of Artificial Intelligence Application State Administration of Radio and Television)
出处 《计算机时代》 2021年第10期44-48,共5页 Computer Era
基金 媒体融合网络智能协作计算与跨网协同传输(2019YFB1802702) 8k/4k超高清视频制作与分发应用创新平台建设(ZJ2020-ZD-009)。
关键词 长短期兴趣 准确度 多样性 推荐系统 long-short-term interest precision diversity recommendation system
  • 相关文献

参考文献5

二级参考文献15

共引文献74

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部