期刊文献+

基于卷积神经网络的智慧校园人脸识别系统设计与研究 被引量:5

Design and research of convolutional neural networks based intelligent campus face recognition system
下载PDF
导出
摘要 为了让学生的学习、生活更加智能化,提高教学管理效率,同时建立一个更加安全的校园环境,采用卷积神经网络实现智慧校园人脸识别。文章对卷积神经网络的卷积层、池化层、全连接层和输出层的原理及实现进行了阐述,训练了olivettifaces人脸数据库小样本数据集。实验结果表明,模型的误差率降低到5%以下。用数据库中注册的人脸图像与摄像头实时获取的人脸图像进行匹配时,效果良好,能满足设计需求。 In order to make students'study and life more intelligent,improve the efficiency of teaching management,and at the same time establish a safer campus environment,convolutional neural networks are used to realize smart campus face recognition.This paper describes the principles and implementation of the convolutional layer,pooling layer,fully connected layer and output layer of the convolutional neural networks.The small sample data set of the olivettifaces face database is trained.The experiment results show that the error rate of the model is reduced to 5%or less.When the face image registered in the database is used to match the face image obtained by the camera in actual time,the effect is good and can meet the design requirements.
作者 谢玲莉 Xie Lingli(Longyan Agricultural School,Longyan,Fujian 364000,China)
出处 《计算机时代》 2021年第10期72-74,82,共4页 Computer Era
关键词 卷积神经网络 智慧校园 人脸识别 图像 convolutional neural networks smart campus face recognition image
  • 相关文献

参考文献3

二级参考文献1

共引文献8

同被引文献36

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部