期刊文献+

考虑产品特征属性的替代性需求预测方法

Alternative demand forecasting considering product feature attribute
下载PDF
导出
摘要 随着电商销售业务的高速发展,对用户需求进行快速准确预测已成为重要的研究方向.产品间的替代性对需求有一定影响作用,且此方面的应用研究在不断深入.为了提升需求预测精度,基于畅销预测属性值排序,利用邻近替代率估计方法,并结合Adaboost预测模型,构建出一种更优的考虑产品特征属性的替代性需求预测方法,并通过实验证明该方法行之有效. The current e-commerce sales business is developing rapidly,and the rapid and accurate prediction of demands has become a necessary research direction.The substitution of products has a significant influence on demand,and applied research in this aspect is increasing.Based on the ranking of best-selling predictive attribute values,proximity replacement rate estimation and the Adaboost prediction model were applied in this study to develop an improved demand forecasting method with higher accuracy,considering product feature attributes.The experimental findings confirm that the proposed method is accurate and reliable.
作者 高峻峻 倪子玥 GAO Junjun;NI Ziyue(SILC Business School,Shanghai University,Shanghai 201800,China)
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第3期573-582,共10页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(71871133)。
关键词 需求预测 替代率 逻辑回归 自适应提升 demand forecast substitution rate logistic regression adaptive boosting
  • 相关文献

参考文献7

二级参考文献51

  • 1高峻峻,俞莱若.替代性需求下一类产品的品种选择与库存控制的联合决策[J].系统工程理论与实践,2009,29(3):76-83. 被引量:9
  • 2薛可,李增智,刘浏,宋承谦.基于ARIMA模型的网络流量预测[J].微电子学与计算机,2004,21(7):84-87. 被引量:31
  • 3后锐,张毕西.基于MLP神经网络的区域物流需求预测方法及其应用[J].系统工程理论与实践,2005,25(12):43-47. 被引量:87
  • 4童明荣,薛恒新,林琳.基于Holt-Winter模型的铁路货运量预测研究[J].铁道运输与经济,2007,29(1):79-81. 被引量:10
  • 5HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification [ R ]. UK: School of Electronics and Computer Science, University of Southampton, 2000.
  • 6CHOPRA S, MEINDL P. Supply chain management strategy, planning, and operation [M].北京:清华大学出版社,2001:126-128.
  • 7KOK A G. Management of product variety in retail operations [ D ]. USA: University of Pennsylvania, Management Science and Applied Economies, 2003.
  • 8RMARAM K. Assortment planning in fashion retailing: methodology, application and analysis [ J ]. European Journal of Operational Research, 2001, 129 : 186-208.
  • 9CHANG P C, WANG Y W, TSAI C Y. Evolving neural network for printed circuit board sales forecasting [ J ]. Expert Systems with Applications, 2005, 29:83-92.
  • 10LUXH J T, RIIS J O, STENSBALLE B. A hybrid econometric neural network modeling approach for sales forecasting[ J ]. The International Journal of Production Economies, 1996, 43 : 175-192.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部