期刊文献+

光神经形态计算研究进展与展望(特邀) 被引量:3

Progress and Prospects of Photonic Neuromorphic Computing(Invited)
下载PDF
导出
摘要 脑科学与类脑研究是国际必争战略性前沿。人工智能与深度学习的飞速发展对算力提出了迫切需求。而传统的冯诺依曼架构,由于存算分离导致功耗墙和内存墙,摩尔定律也逐渐放缓。光神经拟态计算充分融合高速光通信、光互连、光集成、硅基光电子与神经拟态计算的特点,具有超高速、大带宽、多维度等优势,在高性能计算、人工智能领域有广阔的应用前景,是突破后摩尔时代传统微电子计算极限极具竞争力的方案。本文回顾了国内外主要研究团队在光神经元、光突触、光神经网络的理论、算法及器件方面的工作,并提出了展望。 Brain science and brain-like research have become the strategic frontier of international competition.The rapid development of artifical intelligence and deep learning has put forward an urgent demand for the computing capacities.In the traditional von Neumann architecture,the physical separation between memory and computing units results in power consumption wall and memory wall problems.Besides,Moore's law is gradually slowing down.Photonic neuromorphic computing,which fully combines the characteristics of high-speed optical communication,optical interconnection,optical integration,silicon-based optoelectronics and neuromorphic computing,has the advantages of ultra-high speed,large bandwidth and multi-dimension.It has wide application prospects in the fields of high-performance computing and artificial intelligence.Furthermore,it is a highly competitive solution that breaks through the limits of traditional microelectronics computing in the post-Moore era.This article reviews the work of the main research teams at home and abroad on the theory,algorithms,and devices of photonic neurons,synapses,and neural networks,and puts forward a prospect.
作者 项水英 宋紫薇 高爽 韩亚楠 张雅慧 郭星星 郝跃 XIANG Shuiying;SONG Ziwei;GAO Shuang;HAN Yanan;ZHANG Yahui;GUO Xingxing;HAO Yue(State Key Laboratory of Integrated Service Networks,Xidian University,Xi'an 710071,China;State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology,School of Microelectronics,Xidian University,Xi'an 710071,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2021年第10期30-46,共17页 Acta Photonica Sinica
基金 国家自然科学基金优秀青年科学基金(No.62022062) 国家自然科学基金(Nos.61974177,61674119) 中央高校基本科研业务费(No.JB210114)。
关键词 光神经形态计算 神经元 突触 突触可塑性 光神经网络 Photonic neuromorphic computing Neuron Synapse Synaptic plasticity Optical neural networks
  • 相关文献

参考文献14

二级参考文献35

  • 1邓绍更,刘立人,郎海涛,潘卫清,赵栋.Hiding an image in cascaded Fresnel digital holograms[J].Chinese Optics Letters,2006,4(5):268-271. 被引量:1
  • 2Furber S B, Galluppi F, Temple S, et al. The spinnaker project. Proc IEEE, 2014, 102: 652-665.
  • 3Beyeler M, Carlson K D, Chou T S, et al. CARLsim 3: a user-friendly and highly optimized library for the creation of neurobiologically detailed spiking neural networks. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), Killarney, 2015. 1-8.
  • 4Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable commu- nication network and interface. Science, 2014, 345: 668-673.
  • 5Qiao N, Mostafa H, Corradi F, et al. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128 K synapses. Front Neurosci, 2015, 9: 141.
  • 6Dayan P, Abbott L F. Theoretical Neuroscience. Cambridge: MIT Press, 2001. 11-52.
  • 7Neil D, Liu S C. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Trans Very Large Scale Integr Syst, 2014, 22: 2621-2628.
  • 8Qiaoliang Bao,Han Zhang,Zhenhua Ni,Yu Wang,Lakshminarayana Polavarapu,Zexiang Shen,Qing-Hua Xu,Dingyuan Tang,Kian Ping Loh.Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser[J].Nano Research,2011,4(3):297-307. 被引量:25
  • 9周治平,涂芝娟,尹兵,谈卫,余丽,易华祥,王兴军.Development trends in silicon photonics[J].Chinese Optics Letters,2013,11(1):72-77. 被引量:3
  • 10Hong Zhou,Jincheng Zhang,Chunfu Zhang,Qian Feng,Shenglei Zhao,Peijun Ma,Yue Hao.A review of the most recent progresses of state-of-art gallium oxide power devices[J].Journal of Semiconductors,2019,40(1):27-44. 被引量:12

共引文献159

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部