期刊文献+

基于混合场景人脸数据集的学习投入度识别 被引量:5

Learning Engagement Detection Based on Face Dataset in the Mixed Scene
下载PDF
导出
摘要 学习投入度是影响教学的重要因素,其自动识别技术可以促进学生的自我调整和教师的教学改进。学习投入度自动识别的准确率主要受训练数据集的影响,在实践中常常因目标场景训练样本不足而难以训练出理想的识别模型。基于此,文章通过三组子实验,探讨了混合场景下的人脸数据集能否提高目标场景下学习投入度识别的准确率问题,结果发现:基于混合场景人脸数据集的学习投入度识别模型平均准确率高于其他两组基于非混合场景数据集的模型。此结论表明,在学习投入度识别任务中通过混合不同场景数据来扩大训练数据集,是解决当前目标场景下标注样本不足的有效策略。本研究对于开发精准的学习投入度识别模型有重要指导作用。 Learning engagement is an important factor affecting teaching,and its automatic detection technology could promote students’self-adjustment and teachers’teaching improvement.The accuracy of learning engagement’s automatic detection is mainly affected by the training dataset.However,in practice,it is often difficult to train an ideal detection model due to the insufficient training samples in the targeted scene.Based on this,the paper explored whether the face dataset in the mixed scene could improve the accuracy of learning engagement’s detection in the targeted scene through three sets of sub-experiments.It was found that the average accuracy of learning engagement detection model based on face dataset in the mixed scene was higher than that of the other two models based on face dataset in the non-mixed scene.This conclusion indicated that expanding training datasets by mixing different scene data was an effective strategy to solve the problem of lacking sufficient data in the targeted scene.This study played an important guidance role in the development of an accurate detection model for learning engagement.
作者 张永和 潘萌 钟国成 曹晓明 ZHANG Yong-he;PAN Meng;ZHONG Guo-cheng;CAO Xiao-ming(Normal College,Shenzhen University,Shenzhen,Guangdong,China 518060;Foshan Mei Sha Bilingual School,Foshan,Guangdong,China 528200)
出处 《现代教育技术》 CSSCI 2021年第10期84-92,共9页 Modern Educational Technology
基金 教育部人文社会科学研究一般项目“智慧学习环境下基于多模态融合的学习参与度识别机制研究”(项目编号:20YJA880001) 深圳大学师范学院运动心理教育协同创新研究院资质项目“基于多视角立体视觉的学习投入度识别研究”的阶段性研究成果。
关键词 学习投入度识别 人脸数据集 计算机视觉 深度学习 混合场景 learning engagement detection face dataset computer vision deep learning mixed scene
  • 相关文献

参考文献3

二级参考文献42

  • 1孟昭兰.为什么面部表情可以作为情绪研究的客观指标[J].心理学报,1987,19(2):124-134. 被引量:24
  • 2刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 3聂舑(2012).基于脑电的情感识别[D].上海:上海交通大学.
  • 4Bartlett, M. S., Littlewort, G. C., & Frank M. G. et al. (2006). Automatic Recognition of Facial Actions in Spontaneous Expressions[J].Journal of Multimedia, 1 (6): 22-35.
  • 5Bashyal, S., & Venayagamoorthy, G.(2008). Recogni- tion of Facial Expression Using Gabor Wavelets and Learning Vector Quantization[J]. Engineering Applications of Artificial Intelligence, 21 (7): 1056-1064.
  • 6Cheon, Y., & Kim, D. (2009). Natural Facial Expres- sion Recognition Using Differential-AAM and Manifold Learn- ing[J].Pattern Recognition, (42): 1340- 1 350.
  • 7De Lathauwer, L., De Moor, B., & Vandewalle, .I. (2000). A Multilinear Singular Value Decomposition [J]. Society for Industrial and Applied Mathematics Journal of Matrix Analy- sis and Applications, 21(4): 1253-12781.
  • 8Ekman, P., & Friesen, W. V.(1975). Friesen Unmask- ing the Face[M]. New Jersey: Prentice Hall.
  • 9Ekman, P., & Friesen, W. V.(1978). Facial Action Cod- ing System: A Technique for The Measurement of Facial Move- ment[M]. Palo Alto: Consulting Psychologists Press.
  • 10Ekman, P., Friesen, W. V., & Hager, J. C. (2002). Fa- cial Action Coding System(2nd ed.)[M]. London: Weidenfeld and Nicolson.

共引文献169

同被引文献91

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部