期刊文献+

结合互信息通道选择与混合深度神经网络的脑电情感识别方法 被引量:9

EEG Emotion Recognition Based on Normalized Mutual Information Channel Selection and Hybrid Deep Neural Network
下载PDF
导出
摘要 针对单模态深度神经网络(Deep Neural Network, DNN)难以充分提取情感分类任务中脑电信号的多域特征,且脑电信号中存在通道冗余的问题,提出一种结合互信息通道选择与混合深度神经网络的脑电情感识别方法,首先提取各通道信号中γ节律的微分熵(Differential Entropy, DE)特征,通过DE计算通道间的归一化互信息(Normalized mutual information, NMI),将所得NMI矩阵按列求和后的向量作为表征各通道任务相关性的权值,根据权值选出最优通道集,之后采用卷积神经网络(Convolutional Neural Networks, CNN)和长短期记忆网络(Long-short term memory neural network, LSTM)相结合的混合DNN网络进行样本特征提取和分类。该方法分别在DEAP数据集的效价(Valence)和唤醒度(Arousal)上取得了87.60%和88.58%的平均分类准确率,表明了所提出方法的可行性和有效性。 Aiming at solving the problem that single mode deep neural network( DNN) fails to fully extract the multidomain features of EEG signals and redundant channel selecting in EEG emotion recognition tasks. A Normalized Mutual Information( NMI) based channel selection for hybrid DNN is proposed in this paper. Firstly the differential entropy( DE) are extracted from the γ EEG rhythm. The NMI are calculated between each channel according to the DE. The vector summed by the column of the NMI matrix is used as the weight to characterize the task correlation of each channel. Then the optimal channel set is selected by channel’s weight. Secondly the hybrid DNN with convolutional neural network( CNN) and long-term and short-term memory network( LSTM) is used for feature extraction and classification after channel selection. Extensive binary emotion classification experiments are carried out on DEAP dataset,and proposed method achieved 87.60% and 88.58% average accuracy in Valence and Arousal respectively,which shows the feasible and effective of proposed method.
作者 孟明 胡家豪 高云园 马玉良 MENG Ming;HU Jiahao;GAO Yunyuan;MA Yuliang(School of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2021年第8期1089-1095,共7页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61971168,62071161)。
关键词 脑电信号 情感识别 归一化互信息 通道选择 混合深度神经网络 electroencephalography emotion recognition normalized mutual Information channel selection hybrid deep neural networks
  • 相关文献

参考文献5

二级参考文献70

  • 1白露,马慧,黄宇霞,罗跃嘉.中国情绪图片系统的编制——在46名中国大学生中的试用[J].中国心理卫生杂志,2005,19(11):719-722. 被引量:314
  • 2刘涛生,马慧,黄宇霞,罗跃嘉,严进,刘伟志.建立情绪声音刺激库的初步研究[J].中国心理卫生杂志,2006,20(11):709-712. 被引量:12
  • 3Minsky M. Society of Mind [M]. New York: Simon andSchuster, 1988.
  • 4Picard R W. Affective Computing [M]. Cambridge,MA:MIT Press, 1997.
  • 5Kim M K,Kim M, Oh E. et al. A review on thecomputational methods for emotional state estimation fromthe human EEG [J]. Computational and MathematicalMethods in Medicine* 2013, 2013 : 1-13.
  • 6Koelstra S, MuhlC,Soleymani M, et al. DEAP: A databasefor emotion analysis using physiological signals [J]. IEEETrans on Affective Computing, 2012, 3(1): 18-31.
  • 7Gupta R, Gupta H,Mohania M. Cloud computing and bigdata analytics: What is new from databases perspective? [C]//Proc of Big Data Analytics. Berlin: Springer, 2012 : 42-61.
  • 8Izard C E. The many meanings/aspects of emotion:Definitions, functions, activation, and regulation [J].Emotion Review, 2010, 2(4) : 363-370.
  • 9van den Broek E L. Ubiquitous emotion-aware computing[J]. Personal and Ubiquitous Computings 2013,17(1) : 53-67.
  • 10Mehrabian A. Pleasure arousal dominance: A generalframework for describing and measuring individual differencesin temperament [J]. Current Psychology, 1996, 14 ( 4 ):261-292.

共引文献121

同被引文献64

引证文献9

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部