摘要
由于生物发酵过程的代谢反应没有稳定的工作操作点,使得反应过程具有高度的非线性变化,生产质量伴随严重的时变性演化,导致传统型的PID控制器参数整定困难,控制效果的满意程度较低.该文提出采用多种不同类型的粒子群算法来整定发酵过程PID控制器的参数.结合生物反应过程的机理特性,将整个发酵过程分解成4个子区间,并优化整定得到基于不同类型的粒子群优化算法的子过程PID控制器.仿真结果表明:针对发酵过程的不同特性,可选择不同粒子群算法优化子过程PID参数,以解决实际应用的问题.
Conventional proportional-integral-derivative(PID)controller has been found insufficient for nonlinear and time-varying fermentation processes.The PID control parameters are determined by using different particle swarm optimization algorithms.In combination with the process mechanism,the whole process is decomposed into four sub-intervals,and the sub-processes PID controller based on different particle swarm algorithms are optimized.As an example,a typical intermittent fermentation simulation show that different particle swarm algorithms are selected to optimize the sub-process PID parameters,which can solve the problems in the practical application.
作者
王志文
李大刚
陈崇城
曾飞虎
陈晓玲
WANG Zhi-wen;LI Da-gang;CHEN Chong-cheng;ZENG Fei-hu;CHEN Xiao-Ling(Fujian University Applied Technical Engineering Center of Practical Chemical Materials,Liming Vocational University,Quanzhou 362000,China;School of Light Industry,Liming Vocational University,Quanzhou 362000,China;School of New Materials and Shoes&Clothing Engineering,Liming Vocational University,Quanzhou 362000,China)
出处
《通化师范学院学报》
2021年第10期8-19,共12页
Journal of Tonghua Normal University
基金
福建省2019年中青年教师教育科研项目(JAT191447)
黎明职业大学2018年规划项目(LZ2018101).
关键词
间歇过程
发酵过程
PID控制
粒子群算法
batch process
fermentation process
PID control
particle swarm optimization