期刊文献+

服装制版系统参数量化模式识别

Pattern recognition of parameter quantization in garment board making system
下载PDF
导出
摘要 针对传统服装制版系统参数量化模式识别方法的效率较低等问题,提出了一种基于小波分析的服装制版系统参数量化模式识别方法。提取服装制版系统中服装长度和围度等主要参数,借助概率密度函数确定服装制版系统参数的误差;通过主成分分析法计算系统参数信息的贡献率,获取服装制版系统参数高维度特征值,实现系统参数的降维处理;采用BP神经网络设计服装制版系统参数量化模式识别模型,使用小波分析方法对该模型求解,获取服装制版系统参数量化模式识别的最优解,实现了服装制版系统参数量化模式识别。结果表明,所提方法能够快速、准确地完成服装制版系统参数量化模式识别,具有较强的实用性。 In view of the low efficiency of traditional method of parameter quantification pattern recognition in garment board making system,this paper proposes a method of parameter quantification pattern recognition based on wavelet analysis.The main parameters of the system are extracted,including the length and circumference of the garment,and the error of the parameters of the garment board making system is determined by the probability density function.The contribution rate of the system parameter information is calculated by the principal component analysis method,and the high dimension characteristic value of the parameters of the garment board making system is obtained,and the dimension reduction of the principal component dimension of the system parameters is realized;BP neural network is used in the model of parameter quantification pattern recognition of garment board making system.The model is solved by wavelet analysis,and the optimal solution of the parameter quantification pattern recognition of the garment board making system is obtained,and the parameter quantification pattern recognition of the garment board making system can be realized.The simulation results show that the proposed method can quickly and accurately complete the parameter quantitative pattern recognition in garment board making system,and has a strongly practical performance.
作者 高旋 薛庆 GAO Xuan;XUE Qing(College of Art,Lu′an Vocational Technical College, Lu′an 237000,China;School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)
出处 《河南工程学院学报(自然科学版)》 2021年第3期5-9,共5页 Journal of Henan University of Engineering:Natural Science Edition
基金 安徽省高校自然科学研究重点项目(KJ2018A0777) 安徽省高等学校省级质量工程项目(2016ckjh193) 安徽省高等学校省级质量工程项目(2017zhkt421)。
关键词 小波分析 服装制版系统 参数量化模式识别 wavelet analysis garment board making system parameter quantization pattern recognition
  • 相关文献

参考文献10

二级参考文献88

  • 1程相杰,高沁翔.模糊神经网络在变压器油中溶解气体故障诊断中的应用[J].电气技术,2007,8(11):58-59. 被引量:2
  • 2程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 3陈波,郭壮志.基于优化平滑因子σ的概率神经网络的变压器故障诊断方法研究[J].现代电力,2007,24(2):44-47. 被引量:18
  • 4丁鹭飞,耿富录,陈建春.雷达原理[M].北京:电子工业出版社,2012.
  • 5Xiaobo Qu,Qiang Meng,Li Suyi.Ship collision risk assessment for the Singapore Strait[J]. Accident Analysis and Prevention . 2011 (6)
  • 6CHO S I. On-line PD (partial discharge) monitoring of power system components[D]. Finland: Aalto University, 2011.
  • 7MASHESWARI R V, SUBBURAJ R VIGNESHWARAN B, et al. Non linear support vector machine based partial discharge patterns recognition using fractal features[J]. Journal of Intelligent and Fuzzy Systems, 2014, 27(5):2649-2664.
  • 8ZHANG Hao, BLACKBURN T R, PHUNG B T, et al. A novel wavelet transform technique for on-line partial discharge measurements part 1: WT de-nosing algorithms[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(1): 3-14.
  • 9SAHOO N C, SALAMA M M A, BARTNIKAS R. Trends in partial discharge pattern classification: a survey[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(2): 248-264.
  • 10Williams J W, Aggour K S, Interrante J, et al. Bridging high velocity and high volume industrial big data through distributed in-memory storage & analytics[C]//2014 IEEE International Conference on Big Data. Washington, DC: IEEE, 2014: 932-941.

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部