摘要
燃煤锅炉脱硝反应器入口NOx浓度是锅炉燃烧过程中的一个重要参数,针对常规NOx分析测量仪存在精确度较低的问题,通过支持向量回归(SVR)算法建立锅炉的NOx排放预测模型,选取均方误差(MSE)作为模型的评估函数,利用遗传算法(GA)对模型参数进行优化,编制程序对NOx排放量进行预测.以某300MW燃煤机组现场数据为基础进行仿真验证,结果表明,在与SVR、BPNN等方法的对比中,GA-SVR所建立的模型在NOx排放量的预测中取得了更优的效果.
For the NOx concentration at the inlet of denitration reactor for coal-fired boiler,an important parameter in the combustion process for the boiler,the precision of conventional NOx analyzer is low.Therefore,a NOx emission prediction model for the boiler was established based on the support vector regression(SVR)algorithm,with mean square error(MSE)as the evaluation function for the model.The genetic algorithm(GA)was adopted to optimize relevant parameters of the model,and the NOx emission was predicted through programming.A simulation verification was carried out based on the field data of a 300 MW coal-fired unit,and the results showed that the model established by GA-SVR was more effective than SVR and BPNN in the NOx emission prediction.
作者
孙悦
王雪晶
于攀
曹玉波
SUN Yue;WANG Xuejing;YU Pan;CAO Yubo(School of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin 132022,China;Synthetic Resin Factory,PetroChina Jilin Petrochemical Company,Jilin 132021,China;Department of Process Engineering,Kostal Automotive Electric Co,Ltd,Changchun 130033,China)
出处
《吉林化工学院学报》
CAS
2021年第9期31-35,共5页
Journal of Jilin Institute of Chemical Technology
关键词
支持向量回归
NOX排放
软测量
遗传算法
support vector regression
NOx emission
soft sensor
genetic algorithm