摘要
作为特殊的抽象凸(凹)集,radiant集和co-radiant集在抽象凸分析和多目标优化问题理论中发挥着重要作用。首先建立radiant集co-radiant集的等价刻画,从而推导出它们的重要性质。然后,将重要性质应用到向量优化问题近似解的刻画中,得到关于近似解集的等价刻画。
As a special abstract convex(concave) sets,radiant sets and co-radiant sets play the important roles in abstract convex analysis and the theory of multiobjective optimization problems.We first establish the equivalent characterizations for the radiant sets and co-radiant sets.Finally,we apply important properties to the characterization of the approximate solutions of the vector optimization problems,and obtain the equivalent characterization of the approximate solution sets.
作者
汪文意
高英
刘芙萍
WANG Wenyi;GAO Ying;LIU Fuping(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处
《运筹学学报》
CSCD
北大核心
2021年第2期135-143,共9页
Operations Research Transactions
基金
国家自然科学基金(Nos.11771064,11991024)
重庆市科学技术研究重点项目(No.KJZDK202001104)
重庆市高校创新研究群体项目(No.CXQT20014)。