摘要
语义检索是通过自然语言统计模型,对技术方案中的词进行抽取形成索引词,并通过将各个索引词之间的相关度与专利库中的文献进行对比排序,获得结果。本文结合三个实际案例,拓展了语义检索在检索方式上的思路,提高了文件的检索效率以及准确率。
Semantic search is to extract the words in the technical solution through the natural language statistical model to form the index words, and compare and sort the relevance between each index word with documents in the patent database to obtain the results. This paper provides more retrieving ideas by semantic search, and improves retrieval efficiency and accuracy.
作者
曹倩
CAO Qian(Patent Search and Consultation Center of CNIPA,Beijing 100096)
出处
《中国发明与专利》
2021年第10期74-77,共4页
China Invention & Patent