期刊文献+

结合天空区域分割和加权融合的图像去雾算法 被引量:2

Image Dehazing Algorithm Using Sky Region Segmentation and Weighted Fusion
原文传递
导出
摘要 针对传统暗通道去雾算法对天空区域处理能力不足,复原效果常伴有色彩失真及光晕现象等问题,提出了一种结合天空区域分割和加权融合的去雾算法。利用天空区域的亮度特性设置众数约束阈值,将雾图分割为天空和非天空区域;结合不同滤波尺寸暗通道优势,构造融合暗通道;在天空区域分割的基础上采用加权技术获得更可靠的大气光值;设置过渡区域对天空和非天空区域的透射率进行结合。实验结果表明,针对含有天空区域的雾图,本文算法的去雾效果明显,改善了天空区域颜色失真的问题,并抑制了边缘区域的光晕效应。 The traditional dehazing algorithm using a dark channel is insufficient for studying the sky area and its restoration effect is accompanied by color distortion and halo.To solve this problem,we propose a dehazing algorithm combining sky region segmentation and weighted fusion.First,the cloud map is divided into sky and nonsky regions by setting mode constraint threshold from the brightness of the sky region.Second,the fusion dark channel is constructed by combining dark channels with different filter sizes.Then,the weighted technique is used to obtain a more reliable atmospheric light value based on the sky region segmentation.Finally,a transition region is set to combine the transmittance of the sky and nonsky regions.The experimental results show that the proposed algorithm dehazes the fog map in the sky region,improves the color distortion of the sky region,and restrains the halo effect of the edge region.
作者 杨燕 武旭栋 杜康 Yang Yan;Wu Xudong;Du Kang(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou,Gan8u 730070,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第16期338-345,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61561030) 兰州交通大学研究生教改项目(JG201928)。
关键词 图像处理 图像去雾 暗通道先验 天空区域分割 透射率 图像复原 image processing image dehazing dark channel prior sky region segmentation transmission image restoration
  • 相关文献

参考文献4

二级参考文献47

  • 1王炳健,刘上乾,周慧鑫,李庆.基于平台直方图的红外图像自适应增强算法[J].光子学报,2005,34(2):299-301. 被引量:101
  • 2Tail R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 3Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): Article No. 72.
  • 4He K M, Sun J, Tang X O. Single image haze removal us- ing dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami. USA: IEEE, 2009. 1956-1963.
  • 5Tarel J P, Hautiere N. Fast visibility restoration from a sin- gle color or gray level image. In: Proceedings of the 12th IEEE International Conference oil Computer Vision. Kyoto, USA: IEEE. 2009. 2201-2208.
  • 6Namer E, Schectmer Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the 2005 Polarization Science arid Remote Sensing. San Diego, USA: SPIE, 2005. 36-45.
  • 7Cardei V C, Funt B, Barnard K. White point estimation for uncalibrated images. In: Proceedings of the 7th IS and T/SID Color Imaging Conference: Color Science, Systems and Applications. Scottsdale, 1999. 97-100.
  • 8Burt P J, Kolczynski IR J. Enhanced image capture through fllsion. In: Proceedings of the 4th Iuternational Confe, rence on Computer Vision. Berlin, USA: IEEE, 1993. 173-182.
  • 9Paris M, Fredo D. A fast approximation of the bilateral fil- ter using a signal processing approach. Ⅲ: Proeeedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 568-580.
  • 10Drago F, Myszkowski K, Annen T, Chiba N. Adaptive log- arithmic mapping for displaying high contrast sce,ms. Com- puter Graphics Forum, 2003, 22(3): 419-426.

共引文献153

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部