期刊文献+

基于随机蛙跳算法的特征波长优选 被引量:9

Characteristic Wavelength Optimization Based on Random Frog Algorithm
原文传递
导出
摘要 在随机蛙跳算法的基础上,提出了一种改进的窗口随机蛙跳算法,即使用连续窗口代替单个波长点,所提算法提高了原蛙跳算法的寻优精度,降低了随机蛙跳算法的迭代次数,从而提高了算法的收敛速度。血液样本的实验结果表明,相较于全波段,建立的偏最小二乘法模型的预测均方根误差下降了47.9%,预测集相关系数Rp提高了4.07%,证明了所提算法的有效性。通过对3种主流算法及改进随机蛙跳算法筛选出的特征波长建立回归分析模型,证明了改进算法在特征波长选择上的优越性。 Based on the random frog algorithm, a window-based random frog algorithm is proposed. With a continuous window instead of a single wavelength point, the proposed algorithm improves the optimization accuracy of the original random frog algorithm and reduces the iteration times of the algorithm, thus improving the convergence speed. The results of the blood samples show that compared with the full-band results, the root mean square error of prediction(RMSEP) of the built partial least square model decreases by 47.9%, and the correlation coefficient of the prediction set, Rp, increases by 4.07%, proving the validity of the proposed algorithm. The regression analysis of the characteristic wavelengths selected by the three mainstream algorithms and the window-based random frog algorithm is carried out, which demonstrates the superiority of the improved algorithm in selecting the characteristic wavelength.
作者 撒继铭 江河 谢凯文 顾瀚文 罗怡杰 张朱珊莹 Sa Jiming;Jiang He;Xie Kaiwen;Gu Hanwen;Luo Yijie;Zhang Zhushanying(School of Information Engineering,Wuhan University of Technology,Wuhan,Hubei 430070,China;Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks,Wuhan,Hubei 430070,China;Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis&Treatment,Wuhan,Hubei 430074,China;College of Biomedical Engineering,South-Central University for Nationalities,Wuhan,Hubei 430074,China;Key Laboratory of Cognitive Science(South-Central University for Nationalities),State Ethnic Affairs Commission,Wuhan,Hubei 430074,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2021年第15期227-235,共9页 Acta Optica Sinica
基金 国家自然科学基金(61501526,61178087)。
关键词 光谱学 红外光谱 随机蛙跳算法 定量分析 特征波长选择 spectroscopy infrared spectroscopy random frog algorithm quantitative analysis characteristic wavelength optimization
  • 相关文献

参考文献6

二级参考文献50

  • 1刘焕军,张柏,刘殿伟,王宗明,宋开山,杨飞.松嫩平原典型土壤高光谱定量遥感研究[J].遥感学报,2008,12(4):647-654. 被引量:22
  • 2陈斌,王豪,林松,赵杰文.基于相关系数法与遗传算法的啤酒酒精度近红外光谱分析[J].农业工程学报,2005,21(7):99-102. 被引量:49
  • 3陈洁梅,潘涛,陈星旦.二阶导数光谱预处理在用FTIR/ATR方法定量测定葡萄糖-6-磷酸和果糖-6-磷酸中的应用[J].光学精密工程,2006,14(1):1-7. 被引量:28
  • 4ZOU Xiaobo, ZHAO Jiewen, POVEY M J W, et al. Variables selection methods in near-infrared spectroscopy~J]. Analytica Chimica Acta, 2010, 667(1/2):14-32.
  • 5ROSSI F, LENDASSE A, FRANCOIS D, et al. Mutual information for the selection of relevant variables in spectrometric nonlinear modeling [J]. Chemometrics and Intelligent Laboratory Systems, 2006, 80(2): 215-226.
  • 6YILDIZ G, WEHLING R L, CUPPETT S L. Monitoring PV in corn and soybean oils by NIR speca-oscopy[J]. J Am 0il Chem Soc, 2002, 79 (11): 1085-1089.
  • 7TAKAMURA H, HYAKUMOTO N, ENDO N, et al. Determination of lipid oxidation in edible oils by near infrared spectroscopy[J]. Near Infrared Spectrosc, 1995(3): 219-225.
  • 8CAI Wensheng, LI Yankun, SHAO Xueguang. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra[J]. Chemorn Intell Lab Syst, 2008, 90: 188-194.
  • 9NORGAARD L, SAUDLAND A,WAGNER J, et al. Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy[J]. Appl Spectrosc, 2000, 54: 413-419.
  • 10BORIN A, POPPI R J. Application of mid infrared spectroscopy and iPLS for the quantification of contaminants in lubricating oil[J]. Vib Spectrosc, 2005, 37:27-32.

共引文献73

同被引文献132

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部