期刊文献+

基于稠密时角法的天空背景相机标定技术研究 被引量:1

Denseness Star-Arc Calibration for Sky-Background Survey Camera
原文传递
导出
摘要 标定是利用相机进行测量的重要步骤。标定计算相机的内、外方位元素,直接决定了多目视觉测量的精度。在传统的相机标定中,需要设置一定数量稳定、高精度测量的控制点。而在大视场、天空背景下,无法满足上述布设条件。为了实现高精度的相机标定,提出一种可实现内、外参一体化标定的稠密时角标定技术,该技术利用无人机模拟恒星星体,在相机视场内均匀布设控制点并解算标定参数。在解算过程中,针对无人机RTK精度不稳定性,以及特征点提出可靠性提出了非线性最小二乘牛顿-高斯内插算法(WTLS)并得到较高的标定精度。最后采用视场角为77°×66°的相机数据分析验证,实验表明该方法的标定精度高,标定误差优于0.3°,可有效应用于天空背景的大视场相机标定。 Calibration is one of the core processes in intersection survey.In classic calibration,the calculations of intrinsic and exterior parameters are separately and require amount of stable and static control points.However,in large FOV and sky-background survey camera calibration,above mentioned conditions cannot be satisfied.In this paper,a denseness stararc calibration is proposed.To achieve better results,the WTLS is used to eliminate the influence of error from RTK and UAV identification.To test the performance of the proposed method,cameras with the FOV of 77°×66°are used.And the cameras are set with different pitches and azimuths.Experimental results show that the proposed method is able to gain accurate result.Calibration error is less than 0.3°.
作者 官斌 蔡龙飞 GUAN Bin;CAI Long-fei(The 7th Military Representative Office of the PLA Stationed inWuhan,Wuhan 430223,China;The 1st Military Representative Office of the PLA Stationed inWuhan,Wuhan 430061,China)
出处 《光学与光电技术》 2021年第5期55-60,共6页 Optics & Optoelectronic Technology
关键词 相机 标定 时角法 天空背景 误差 camera calibration star-arc sky-background error
  • 相关文献

参考文献9

二级参考文献87

  • 1M.Kiani.Template-based smoothing functions for data smoothing in Geodesy[J].Geodesy and Geodynamics,2020,11(4):300-306. 被引量:1
  • 2谭晓军,余志,李军.一种改进的立体摄像机标定方法[J].测绘学报,2006,35(2):138-142. 被引量:14
  • 3万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 4马吉甫,高雪峰.基于扫描线的连通域搜索算法[J].福建电脑,2006,22(12):121-121. 被引量:7
  • 5詹总谦,张祖勋,张剑清.基于LCD平面格网和有限元内插模型的相机标定[J].武汉大学学报(信息科学版),2007,32(5):394-397. 被引量:16
  • 6Eveland C, Konolige K,and Bolles R. C. Background modeling for segmentation of video-rate stereo sequences[ A ]. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition[ C] : Santa Barbara, CA. June 1998.266-271.
  • 7Saptharishi M, Bhat K, Diehl C, Oliver C, Savvides M, Soto A, Dolan J and Khosla P. Recent advances in distributed collaboralive surveillance[ A ]. SPIE Proceedings on Unattended Ground Sensor Technologies and Applications (AeroSense 2000) [C]:Orlando, USA.April 2000.4040:199 - 208.
  • 8Wildes R, Wixson L.Detecting salient motion using spatiotemporal filters and optical flow. Proc[A]. DARPA Image Understanding Workshop[C]: Monterey, California. Nov 1998.
  • 9Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and practice of background maintenance [ A ]. The Proceedings of the Seventh IEEE International Conference on Computer Vision[C] : Kerkyra, Greece. Sept 1999.255 - 261.
  • 10Wixson L. Detecting salient motion by accumulating directionally-consistent flow [J]. IEEE transactions on pattem analysis and machine intelligence. Aug 2000,22 (8) : 744 - 780.

共引文献251

同被引文献16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部