期刊文献+

基于多源交配选择策略的重组算子与多目标优化研究 被引量:2

Research on Reproduction Operator and Multi-objective Optimization Based on Multi-source Mating Selection Strategy
下载PDF
导出
摘要 本文提出了一种基于多源交配选择的多目标进化算法(Multi-source Mating Selection based Multi-objective Evolutionary Algorithms,MMSEA).在MMSEA算法中,谱聚类被用来挖掘种群规则特性,基于所获得的种群结构化信息设计了一种多源交配选择重组算子来引导算法搜索,通过为每个个体设置多个交配选择源,在利用相似个体重组加速算法收敛的同时较好地保持了种群的多样性.实验结果表明,所提重组算子可以有效提升算法性能,将MMSEA与多种主流的多目标进化算法进行实验对比研究与参数灵敏度分析的结果表明,MMSEA在求解具有复杂特性的典型多目标优化问题测试集时表现出较强的竞争力. This work proposes a multi-source mating selection based multi-objective evolutionary algorithm(MMSEA).In MMSEA,the spectral clustering algorithm is used to exploit the property of the multi-objective optimization problems.Based on the obtained population structure information,a multi-source mating selection strategy is designed to guide the algorithm search.The convergence of the algorithm is accelerated and the diversity of the population is maintained by setting multiple mating selections for each individual and using similar-based reproduction.The experimental results show that the proposed reproduction operator can effectively improve the performance of the algorithm.MMSEA is experimentally compared with variety of mainstream multi-objective evolutionary algorithms,and parameter sensitivity is also performed.In these experiments,MMSEA demonstrates strong competitiveness over the other approaches in solving typical multi-objective optimization problems with complex characteristics.
作者 张屹 陆逸舟 王帅 陆曈曈 ZHANG Yi;LU Yi-zhou;WANG Shuai;LU Tong-tong(School of Mechanical Engineering and Rail Transit,Changzhou University,Changzhou,Jiangsu 213164,China;School of Bussiness,Changzhou University,Changzhou,Jiangsu 213164,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2021年第9期1754-1760,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.51875053) 科技部重点研发计划项目(No.2018YFC1903101)。
关键词 聚类学习 进化算法 交配选择 多目标优化 clustering learning evolutionary algorithm mating selection multi-objective optimization
  • 相关文献

参考文献3

二级参考文献20

  • 1WU Z, LEAHY R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentationEJ~. IEEE Trans on PAMI,1993,15(ll):1101-1113.
  • 2SHI J, MALIK J. Normalized cuts and image segmentation[-J~. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8) :888-905.
  • 3HAGEN L,KAHNG A B. New spectral methods for ratio cut par- titioning and clustering EJ~. Computer-Aided Design, 1992,11 ( 9 ) .. 1074-1085.
  • 4SARKAR S, SOUNDARARAJAN P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automataEJ~. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 (5) : 504-525.
  • 5DING C,HE X,ZHA H,et al. Spectral min-max cut for graph par- titioning and data clusteringEC~. Proc. of the IEEE Intl Conf. on Data Mining. 2001 ~ 107-114o.
  • 6MEILA M, XU L. Multiway cuts and spectral clusteringEZ~. Uni- versity o[ Washington Technical Report, 2003 : 442-447.
  • 7DRAKE A,VENTURA D. An empirical comparison of spectral learning methods for elassification[-C3. Proceedings of the 12th In- ternational Conference on Machine Learning and Applications, IEEE,2013(1) :9-14.
  • 8雷小锋,谢昆青,林帆,夏征义.一种基于K-Means局部最优性的高效聚类算法[J].软件学报,2008,19(7):1683-1692. 被引量:114
  • 9蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:188
  • 10赵凤,焦李成,刘汉强,公茂果.半监督谱聚类特征向量选择算法[J].模式识别与人工智能,2011,24(1):48-56. 被引量:29

共引文献72

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部