摘要
通过改进Shamanskii-like Levenberg-Marquard参数,提出了修正的Shamanskii-like Levenberg-Marquard方法(MSLM).给出该算法在一定条件下的全局收敛性,并证明其收敛阶为(m+1).数值实验表明,在解决不同问题尤其是大规模问题时,所提出的算法具有更高的求解效率.
By improving the parameters of Shamanskii-like Levenberg-Marquard,a modified Shamanskii-like Levenberg-Marquard method(MSLM)is proposed.The global convergence of the algorithm under certain conditions is given,and its convergence step is proved to be(m+1).Numerical experiments show that the proposed algorithm has higher solving efficiency when solving different problems,especially large-scale problems.
作者
李清雅
马昌凤
LI Qingya;MA Changfeng(School of Mathematics and Statistics,Fujian Normal University,Fuzhou 350117,China)
出处
《福建师范大学学报(自然科学版)》
CAS
2021年第5期1-8,共8页
Journal of Fujian Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11901098)。